
Annamalai        University 
 

Department of Computer Science and Engineering 

 
BE (CSE)  -  IV Semester  

(A & B-Batch) 

 

18CSPC405 – Python Programming 

Lecture Notes (Unit 1- 5) 
 
 
 

Course Teachers 
 

Dr. S. Pasupathy (A-Batch) 

Dr. M. Balasubramanian (B-Batch) 

Associate Professors 

 

 

 

 

 
 
 

Faculty of Engineering and Technology 
    Annamalai University, AnnamalaiNagar-608002  

 



 

Table of Contents 
 

 

Unit No. Title Page No. 

 Python Programming Syllabus 1 

I Introduction 3 

II Python Function 26 

III Class and Object 53 

IV Files and Exception Handling 70 

V Database and GUI 86 

 

 



 
 

18CSPC405 PYTHON PROGRAMMING 
L T P C 
3 0 0 3 

 
Course Objectives: 
 
 To understand and be able to use the basic programming principles such as data types, variable, conditionals, 

loops, recursion and function calls. 

   To learn how to use basic data structures such as List, Dictionary and be able to manipulate text files and 

images. 

 To understand the process and will acquire skills necessary to effectively attempt a programming problem and 

implement it with a specific programming language – Python. 

UNIT - I Introduction 

Elementary Programming, Selections and Loops: History of Python – Getting Started with Python – 

Programming Style – Writing a Simple Program – Reading Input from the Console – Identifiers – Variables, 

Assignment Statements, and Expressions – Simultaneous Assignments – Named Constants – Numeric Data Types 

and Operators – Type Conversions and Rounding–Introduction – Boolean Types, Values, and Expressions – if 

Statements – Two-Way if-else Statements – Nested if and Multi-Way if-elif-else Statements – Logical Operators – 

Conditional Expressions – Operator Precedence and Associativity – Detecting the Location of an Object Case 

Study: Computing Body Mass Index – The while Loop – The for Loop – Nested Loops – Keywords break and 

continue – Case Studies: Displaying Prime Numbers and Random Walk. 

 

UNIT - II Python Function 

Mathematical Functions, Strings and User Defined Functions: Simple and Mathematical Python Built–in 

Functions – Strings and Characters – Introduction to Objects and Methods – Formatting Numbers and Strings – 

Drawing Various Shapes 

– Drawing with Colors and Fonts – Defining a Function – Calling a Function – Functions 

with/without Return Values – Positional and Keyword Arguments – Passing Arguments by Reference Values – 

Modularizing Code – The Scope of Variables – Default Arguments – Returning Multiple Values –Function 

Abstraction and Stepwise Refinement – Case Study: Generating Random ASCII Characters. 

 

UNIT - III Class and Object 

Introduction to Object – Oriented Programming – Basic principles of Object – Oriented Programming in 

Python – Class definition, Inheritance, Composition, Operator Overloading and Object creation – Python special 

Unit – Python Object System – Object representation, Attribute binding, Memory Management, and Special 

properties of classes including properties, Slots and Private attributes. 

 

UNIT - IV Files and Exception Handling 

Files, Exception Handling and Network Programming: Introduction –Text Input and Output – File Dialogs – 

–Exception Handling – Raising Exceptions – Processing Exceptions Using Exception Objects – Defining Custom 

Exception Classes – Binary IO Using Pickling – Case Studies: Counting Each Letter in a File and Retrieving Data 

from the Web–Client Server Architecture–sockets – Creating and executing TCP and UDP Client Server Unit – 

Twisted Framework – FTP – Usenets – Newsgroup - Emails – SMTP – POP3. 

 
  

1



 
 

 

UNIT - V Database and GUI 

Database and GUI Programming: DBM database – SQL database – GUI Programming using Tkinter: 

Introduction – Getting Started with Tkinter – Processing Events – The Widget Classes – Canvas – The Geometry 

Managers – Displaying Images – Menus – Popup Menus – Mouse, Key Events, and Bindings – List boxes – 

Animations – Scrollbars – Standard Dialog Boxes–Grids. 

 

TEXT BOOKS: 

 
1. Mark Lutz, “Learning Python, Powerful OOPs”, O’Reilly, 2011. 

2. Guttag, John, “Introduction to Computation and Programming Using Python”, MIT Press, 2013. 
 

REFERENCES: 
 

1. Jennifer Campbell, Paul Gries, Jason montajo, Greg Wilson, “Practical Programming                                      

An Introduction To Computer Science Using Python” The Pragmatic Bookshelf, 2009. 

2. Wesley J Chun “Core Python Applications Programming”, Prentice Hall, 

3. 2012. 

4. Jeeva Jose, “Taming Python by Programming”, Khanna Publishing 

5. House,1st edition,2017. 

6. J.Jose, “Introduction to Computing and Problem Solving with Python”, 

7. Khanna Publications, 1st edition, 2015. 

8. Reema Thareja, “Python Programming”, Pearson, 1st edition, 2017. 

 

Course Outcomes: 
At the end of this course, the students will be able to 
1. Understand basic concepts of Conditional and Looping Statements in python programming. 

2. Solve large program in an easy way using Modules concepts. 

3. Apply the concepts of Object Oriented programming including encapsulation, inheritance and 

polymorphism as used in Python. 

4. Simulate the commonly used operations in file system and able to develop application program to 

communicate from one end system to another end. 

5. Develop menu driven program using GUI interface and to gain knowledge about how to store and retrieve 
data. 
 

 Mapping of Course Outcomes with Programme Outcomes (Ratings: 1-Low, 2-Moderate and 3-High)

 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 

CO1 1 0 1 0 0 0 0 0 0 0 0 0 

CO2 2 1 0 0 1 0 0 0 0 0 0 0 

CO3 1 2 0 0 1 0 0 0 0 0 0 0 

CO4 1 2 2 1 0 0 0 0 0 0 0 0 

CO5 1 2 3 1 2 0 0 0 1 0 0 2 

 

2



18CSPC405 – PYTHON PROGRAMMING 

Unit I – INTRODUCTION 

 

INTRODUCTION 

 

Python is a widely used general-purpose, high level programming language. It was created by 

Guido van Rossum in 1991 and further developed by the Python Software Foundation. It was 

designed with an emphasis on code readability, and its syntax allows programmers to express 

their concepts in fewer lines of code. 

Python is a programming language that lets you work quickly and integrate systems more 

efficiently. 

Reading input from console 
 

 It’s to take input from the user and hence manipulate it or simply display it. input() function is 

used to take input from the user. 

# Python program to illustrate  

# getting input from user  

name = input("Enter your name: ")   

   

# user entered the name 'harssh'  

print("hello", name)  

 
Output: 

hello harssh    

 

# program to get input from user  

   

# accepting integer from the user  

num1 = int(input("Enter num1: "))  

num2 = int(input("Enter num2: "))  

num3 = num1 * num2  

print("Product is: ", num3)  

 

Output: 

Enter num1: 8 Enter num2: 6 ('Product is: ', 48) 

INTERACTIVE MODE PROGRAMMING 

Invoking the interpreter without passing a script file as a parameter brings up the following 

prompt. 

$ python 

Python 2.4.3 (#1, Nov 11 2010, 13:34:43) 

[GCC 4.1.2 20080704 (Red Hat 4.1.2-48)] on linux2 

Type "help", "copyright", "credits" or "license" for more information. 

>>> 

3

https://www.geeksforgeeks.org/python-programming-language/


Type the following text at the Python prompt and press the Enter − 

>>> print "Hello, Python!" 

If you are running new version of Python, then you would need to use print statement with 

parenthesis as in print ("Hello, Python!");. However in Python version 2.4.3, this produces the 

following result − 

Hello, Python! 

SCRIPT MODE PROGRAMMING 

Invoking the interpreter with a script parameter begins execution of the script and continues 

until the script is finished. When the script is finished, the interpreter is no longer active. 

Let us write a simple Python program in a script. Python files have extension .py. Type the 

following source code in a test.py file − 

Live Demo 

print "Hello, Python!" 

We assume that you have Python interpreter set in PATH variable. Now, try to run this program 

as follows − 

$ python test.py 

This produces the following result − 

Hello, Python! 

Let us try another way to execute a Python script. Here is the modified test.py file − 

Live Demo 

#!/usr/bin/python 

 

print "Hello, Python!" 

We assume that you have Python interpreter available in /usr/bin directory. Now, try to run this 

program as follows − 

$ chmod +x test.py     # This is to make file executable 

$./test.py 

This produces the following result − 

Hello, Python! 

PYTHON IDENTIFIERS 

A Python identifier is a name used to identify a variable, function, class, module or other object. 

An identifier starts with a letter A to Z or a to z or an underscore (_) followed by zero or more 

letters, underscores and digits (0 to 9). 

Python does not allow punctuation characters such as @, $, and % within identifiers. Python is 

a case sensitive programming language. Thus, Manpower and manpower are two different 

identifiers in Python. 

4

http://tpcg.io/lsYEBf
http://tpcg.io/2hIf1p


Here are naming conventions for Python identifiers − 

 Class names start with an uppercase letter. All other identifiers start with a lowercase 

letter. 

 Starting an identifier with a single leading underscore indicates that the identifier is 

private. 

 Starting an identifier with two leading underscores indicates a strongly private identifier. 

 If the identifier also ends with two trailing underscores, the identifier is a language-

defined special name. 

RESERVED WORDS 

The following list shows the Python keywords. These are reserved words and you cannot use 

them as constant or variable or any other identifier names. All the Python keywords contain 

lowercase letters only. 

and Exec not 

assert finally or 

break for pass 

class from print 

continue global raise 

def if return 

del import try 

elif in while 

else is with 

except lambda yield 

Lines and Indentation 

Python provides no braces to indicate blocks of code for class and function definitions or flow 

control. Blocks of code are denoted by line indentation, which is rigidly enforced. 

5



The number of spaces in the indentation is variable, but all statements within the block must be 

indented the same amount. For example − 

if True: 

   print "True" 

else: 

   print "False" 

However, the following block generates an error − 

if True: 

print "Answer" 

print "True" 

else: 

print "Answer" 

print "False" 

Thus, in Python all the continuous lines indented with same number of spaces would form a 

block. The following example has various statement blocks 

PYTHON - VARIABLE TYPES 
 

Variables are nothing but reserved memory locations to store values. This means that when you 

create a variable you reserve some space in memory. 

Based on the data type of a variable, the interpreter allocates memory and decides what can be 

stored in the reserved memory. Therefore, by assigning different data types to variables, you 

can store integers, decimals or characters in these variables. 

Assigning Values to Variables 

Python variables do not need explicit declaration to reserve memory space. The declaration 

happens automatically when you assign a value to a variable. The equal sign (=) is used to 

assign values to variables. 

The operand to the left of the = operator is the name of the variable and the operand to the right 

of the = operator is the value stored in the variable. For example − 

Live Demo 

#!/usr/bin/python 

 

counter = 100          # An integer assignment 

miles   = 1000.0       # A floating point 

name    = "John"       # A string 

 

print counter 

print miles 

print name 

Here, 100, 1000.0 and "John" are the values assigned to counter, miles, and name variables, 

respectively. This produces the following result − 

100 

6

http://tpcg.io/Eh9FoM


1000.0 

John 

Multiple Assignment 

Python allows you to assign a single value to several variables simultaneously. For example − 

a = b = c = 1 

Here, an integer object is created with the value 1, and all three variables are assigned to the 

same memory location. You can also assign multiple objects to multiple variables. For example 

− 

a,b,c = 1,2,"john" 

Here, two integer objects with values 1 and 2 are assigned to variables a and b respectively, and 

one string object with the value "john" is assigned to the variable c. 

STANDARD DATA TYPES 

The data stored in memory can be of many types. For example, a person's age is stored as a 

numeric value and his or her address is stored as alphanumeric characters. Python has various 

standard data types that are used to define the operations possible on them and the storage 

method for each of them. 

Python has five standard data types − 

 Numbers 

 String 

 List 

 Tuple 

 Dictionary 

Assignment is fundamental to Python; it is how the objects created by an expression are 

preserved. We'll look at the basic assignment statement, plus the augmented assignment 

statement. Later, in Multiple Assignment Statement, we'll look at multiple assignment. 

Basic Assignment 

We create and change variables primarily with the assignment statement. This statement 

provides an expression and a variable name which will be used to label the value of the 

expression. 

variable = expression 

Here's a short script that contains some examples of assignment statements. 

Example example3.py 

#!/usr/bin/env python 

7

https://www.linuxtopia.org/online_books/programming_books/python_programming/python_ch06s04.html


# Computer the value of a block of stock 

shares= 150 

price= 3 + 5.0/8.0 

value= shares * price 

print value 
 
SIMULTANEOUS ASSIGNMENT 

 

There is an alternative form of the assignment statement that allows us to calculate several values 

all at the same time. It looks like this: 

 

<var>, <var>, ..., <var> = <expr>, <expr>, ..., <expr> 

 

This is called simultaneous assignment. Semantically, this tells Python to evaluate all the 

expressions on the right-hand side and then assign these values to the corresponding variables 

named on the left-hand side. Here's an example. 

Here sum would get the sum of x and y and diff would get the difference. 

This form of assignment seems strange at first, but it can prove remarkably useful. Here's an 

example. Suppose you have two variables x and y and you want to swap the values. That is, you 

want the value currently stored in x to be in y and the value that is currently in y to be stored in x. 

At first, you might think this could be done with two simple assignments. 

 

CONSTANTS 

A constant is a type of variable that holds values, which cannot be changed. In reality, we rarely 

use constants in Python. Constants are usually declared and assigned on a different module/file. 

Example: 

#Declare constants in a separate file called constant.py 

PI = 3.14 

GRAVITY = 9.8 

Then, they are imported to the main file. 

#inside main.py we import the constants 

import constant 

print(constant.PI) 

print(constant.GRAVITY) 
 

TYPES OF OPERATOR 

Python language supports the following types of operators. 

 Arithmetic Operators 

 Comparison (Relational) Operators 

 Assignment Operators 

 Logical Operators 

 Bitwise Operators 

8



 Membership Operators 

 Identity Operators 

Python Arithmetic Operators 

Assume variable a holds 10 and variable b holds 20, then − 

Operator Description Example 

+ Addition Adds values on either side of the operator. a + b = 

30 

- Subtraction Subtracts right hand operand from left hand operand. a – b = -

10 

* 

Multiplication 

Multiplies values on either side of the operator a * b = 

200 

/ Division Divides left hand operand by right hand operand b / a = 2 

% Modulus Divides left hand operand by right hand operand and 

returns remainder 

b % a = 

0 

** Exponent Performs exponential (power) calculation on operators a**b =10 

to the 

power 20 

// Floor Division - The division of operands where the 

result is the quotient in which the digits after the 

decimal point are removed. But if one of the operands 

is negative, the result is floored, i.e., rounded away 

from zero (towards negative infinity) − 

9//2 = 4 

and 

9.0//2.0 

= 4.0, -

11//3 = -

4, -

11.0//3 = 

-4.0 

Python Comparison Operators 

These operators compare the values on either sides of them and decide the relation among them. 

They are also called Relational operators. 

Operator Description Example 

9



== If the values of two operands are equal, then the condition 

becomes true. 

(a == b) 

is not 

true. 

!= If values of two operands are not equal, then condition 

becomes true. 

(a != b) 

is true. 

<> If values of two operands are not equal, then condition 

becomes true. 

(a <> b) 

is true. 

This is 

similar 

to != 

operator. 

> If the value of left operand is greater than the value of right 

operand, then condition becomes true. 

(a > b) is 

not true. 

< If the value of left operand is less than the value of right 

operand, then condition becomes true. 

(a < b) is 

true. 

>= If the value of left operand is greater than or equal to the 

value of right operand, then condition becomes true. 

(a >= b) 

is not 

true. 

<= If the value of left operand is less than or equal to the value 

of right operand, then condition becomes true. 

(a <= b) 

is true. 

Python Assignment Operators 

Operator Description Example 

= Assigns values from right side operands to left side 

operand 

c = a + b 

assigns 

value of a 

+ b into c 

+= Add AND It adds right operand to the left operand and assign 

the result to left operand 

c += a is 

equivalent 

to c = c + 

a 

10



-= Subtract 

AND 

It subtracts right operand from the left operand and 

assign the result to left operand 

c -= a is 

equivalent 

to c = c - 

a 

*= Multiply 

AND 

It multiplies right operand with the left operand and 

assign the result to left operand 

c *= a is 

equivalent 

to c = c * 

a 

/= Divide 

AND 

It divides left operand with the right operand and 

assign the result to left operand 

c /= a is 

equivalent 

to c = c / 

a 

%= Modulus 

AND 

It takes modulus using two operands and assign the 

result to left operand 

c %= a is 

equivalent 

to c = c % 

a 

**= Exponent 

AND 

Performs exponential (power) calculation on 

operators and assign value to the left operand 

c **= a is 

equivalent 

to c = c 

** a 

//= Floor 

Division 

It performs floor division on operators and assign 

value to the left operand 

c //= a is 

equivalent 

to c = c // 

a 

Python Bitwise Operators 

Bitwise operator works on bits and performs bit by bit operation. Assume if a = 60; and b = 13; 

Now in the binary format their values will be 0011 1100 and 0000 1101 respectively. Following 

table lists out the bitwise operators supported by Python language with an example each in 

those, we use the above two variables (a and b) as operands − 

a = 0011 1100 

b = 0000 1101 

----------------- 

a&b = 0000 1100 

a|b = 0011 1101 

11



a^b = 0011 0001 

~a  = 1100 0011 

There are following Bitwise operators supported by Python language 

Operator Description Example 

& Binary AND Operator copies a bit to the result if it exists in 

both operands 

(a & b) 

(means 

0000 1100) 

| Binary OR It copies a bit if it exists in either operand. (a | b) = 61 

(means 

0011 1101) 

^ Binary XOR It copies the bit if it is set in one operand but 

not both. 

(a ^ b) = 49 

(means 

0011 0001) 

~ Binary Ones 

Complement 

It is unary and has the effect of 'flipping' bits. 

(~a ) = -61 

(means 

1100 0011 

in 2's 

complement 

form due to 

a signed 

binary 

number. 

<< Binary Left 

Shift 

The left operands value is moved left by the 

number of bits specified by the right operand. 

a << 2 = 

240 (means 

1111 0000) 

>> Binary Right 

Shift 

The left operands value is moved right by the 

number of bits specified by the right operand. 

a >> 2 = 15 

(means 

0000 1111) 

Python Logical Operators 

Operator Description Example 

and Logical If both the operands are true then condition becomes (a and b) 

12



AND true. is true. 

or Logical OR If any of the two operands are non-zero then condition 

becomes true. 

(a or b) 

is true. 

not Logical 

NOT 

Used to reverse the logical state of its operand. Not(a 

and b) is 

false. 

 
TYPE CONVERSION IN PYTHON 

Python defines type conversion functions to directly convert one data type to another which is 

useful in day to day and competitive programming. This article is aimed at providing the 

information about certain conversion functions. 

1. int(a,base) : This function converts any data type to integer. ‘Base’ specifies the base in 

which string is if data type is string. 

2. float() : This function is used to convert any data type to a floating point number 

3. ord() : This function is used to convert a character to integer. 

4. hex() : This function is to convert integer to hexadecimal string. 

5. oct() : This function is to convert integer to octal string. 
 
BOOL() IN PYTHON 

The bool() method is used to return or convert a value to a Boolean value i.e., True or False, 

using the standard truth testing procedure. 

Syntax: 

bool([x]) 

The bool() method in general takes only one parameter(here x), on which the standard truth 

testing procedure can be applied. If no parameter is passed, then by default it returns False. 

So, passing a parameter is optional. It can return one of the two values. 

 It returns True if the parameter or value passed is True. 

 It returns False if the parameter or value passed is False. 

Here are few cases, in which Python’s bool() method returns false. Except these all other values 

return True. 

 If a False value is passed. 

 If None is passed. 

 If an empty sequence is passed, such as (), [], ”, etc 

 If Zero is passed in any numeric type, such as 0, 0.0 etc 

 If an empty mapping is passed, such as {}. 

 If Objects of Classes having __bool__() or __len()__ method, returning 0 or False 

13



 
LOOP STATEMENT 

Python programming language provides following types of loops to handle looping 

requirements. 

Sr.No. Loop Type & Description 

1 while loop 

Repeats a statement or group of statements while a given condition is TRUE. It tests the 

condition before executing the loop body. 

2 for loop 

Executes a sequence of statements multiple times and abbreviates the code that manages 

the loop variable. 

3 nested loops 

You can use one or more loop inside any another while, for or do..while loop. 

Loop Control Statements 

Loop control statements change execution from its normal sequence. When execution leaves a 

scope, all automatic objects that were created in that scope are destroyed. 

Python supports the following control statements. Click the following links to check their detail. 

Let us go through the loop control statements briefly 

Sr.No. Control Statement & Description 

1 break statement 

Terminates the loop statement and transfers execution to the statement immediately 

following the loop. 

2 continue statement 

Causes the loop to skip the remainder of its body and immediately retest its condition 

prior to reiterating. 

3 pass statement 

The pass statement in Python is used when a statement is required syntactically but you 

do not want any command or code to execute. 

There are following logical operators supported by Python language. Assume variable a holds 

True and variable b holds False then 

14

https://www.tutorialspoint.com/python/python_while_loop.htm
https://www.tutorialspoint.com/python/python_for_loop.htm
https://www.tutorialspoint.com/python/python_nested_loops.htm
https://www.tutorialspoint.com/python/python_break_statement.htm
https://www.tutorialspoint.com/python/python_continue_statement.htm
https://www.tutorialspoint.com/python/python_pass_statement.htm


Operator Description Example 

and Logical 

AND 

If both the operands are true then condition becomes 

true. 

(a and b) 

is False. 

or Logical OR If any of the two operands are non-zero then condition 

becomes true. 

(a or b) 

is True. 

not Logical 

NOT 

Used to reverse the logical state of its operand. Not(a 

and b) is 

True. 

Assignment Operators: 

Assignment operators are used in Python to assign values to variables. 

Operator  Description  Example  

= Assigns values from right side operands to left side operand c = a + b assigns 

value of a + b into 

c 

+= Add AND It adds right operand to the left operand and assign the result 

to left operand 

c += a is 

equivalent to c 

= c + a 

-= Subtract AND It subtracts right operand from the left operand and assign 

the result to left operand 

c -= a is 

equivalent to c 

= c - a 

*= Multiply AND It multiplies right operand with the left operand and assign 

the result to left operand 

c *= a is 

equivalent to c 

= c * a 

/= Divide AND It divides left operand with the right operand and assign the 

result to left operand 

c /= a is 

equivalent to c 

  
= c / ac /= a is 

equivalent to c 

= c / a 

15



%= Modulus AND It takes modulus using two operands and assign the result 

to left operand 

c %= a is 

equivalent to c 

= c % a 

**= Exponent 

AND 

Performs exponential (power) calculation on operators and 

assign value to the left operand 

c **= a is 

equivalent to c 

= c ** a 

//= Floor 

Division 

It performs floor division on operators and assign value to 

the left operand 

c //= a is 

equivalent to c 

= c // a 

 

 

Logical Operators: 

Logical operators are and, or, not operators. 

 
 

Bitwise Operators: 

Let x = 10 (0000 1010 in binary) and y = 4 (0000 0100 in binary) 

 

PRECEDENCE OF PYTHON OPERATORS 

The combination of values, variables, operators and function calls is termed as an expression. 

Python interpreter can evaluate a valid expression. 

For example: 

>>> 5 - 7 

-2 

Here 5 - 7 is an expression. There can be more than one operator in an expression. 

To evaluate these type of expressions there is a rule of precedence in Python. It guides the order 

in which operation are carried out. 

Operator Precedence: 

When an expression contains more than one operator, the order of evaluation 

depends on the order of operations. 

 

16

https://www.programiz.com/python-programming/variables-datatypes
https://www.programiz.com/python-programming/operators
https://www.programiz.com/python-programming/function


Computing Body Mass Index In Python 

 

#Define the constants 

METER   = 100 

  

#Read the inputs from user 

height  = float(input("Enter your height in Centimeters: ")) 

weight  = float(input("Enter your weight in Kg: ")) 

  

temp    = height / METER 

#Calculate the BMI 

bmi = weight / (temp*temp) 

  

#Display the result 

print("Your Body Mass Index is: ","%d"%(bmi)) 

 

Output 

C:\Python\programs>python program.py 

Enter your height in Centimeters: 105 

Enter your weight in Kg: 69 

Your Body Mass Index is: 62 

 

C:\Python\programs> 

 

THE ELSE AND ELIF CLAUSES 

Now you know how to use an if statement to conditionally execute a single statement or a block 

of several statements. It’s time to find out what else you can do. 

Sometimes, you want to evaluate a condition and take one path if it is true but specify an 

alternative path if it is not. This is accomplished with an else clause: 

if <expr>: 

    <statement(s)> 

else: 

    <statement(s)> 

If <expr> is true, the first suite is executed, and the second is skipped. If <expr> is false, the first 

suite is skipped and the second is executed. Either way, execution then resumes after the second 

suite. Both suites are defined by indentation, as described above. 

ONE-LINE IF STATEMENTS 

It is customary to write if <expr> on one line and <statement> indented on the following line like 

this: 

if <expr>: 

17



    <statement> 

But it is permissible to write an entire if statement on one line. The following is functionally 

equivalent to the example above: 

if <expr>: <statement> 

There can even be more than one <statement> on the same line, separated by semicolons: 

if <expr>: <statement_1>; <statement_2>; ...; <statement_n> 

But what does this mean? There are two possible interpretations: 

1. If <expr> is true, execute <statement_1>. 

Then, execute <statement_2> ... <statement_n> unconditionally, irrespective of 

whether <expr> is true or not. 

2. If <expr> is true, execute all of <statement_1> ... <statement_n>. Otherwise, don’t 

execute any of them. 

Python takes the latter interpretation. The semicolon separating the <statements> has higher 

precedence than the colon following <expr>—in computer lingo, the semicolon is said to bind 

more tightly than the colon. Thus, the <statements> are treated as a suite, and either all of them 

are executed, or none of them are: 

 

BREAK & CONTINUE STATEMENTS 

Python provides break and continue statements to handle such situations and to have 

good control on your loop. 

It will discuss the break, continue and pass statements available in Python. 

The break Statement: 

The break statement in Python terminates the current loop and resumes execution at 

the next statement, just like the traditional break found in C. 

The most common use for break is when some external condition is triggered requiring 

a hasty exit from a loop. The break statement can be used in both while and for loops. 

Example: 

#!/usr/bin/python 

 

for letter in 'Python':     # First Example 

   if letter == 'h': 

      break 

   print 'Current Letter :', letter 

   

var = 10                    # Second Example 

18



while var > 0:               

   print 'Current variable value :', var 

   var = var -1 

   if var == 5: 

      break 

 

print "Good bye!" 

This will produce the following result: 

Current Letter : P 

Current Letter : y 

Current Letter : t 

Current variable value : 10 

Current variable value : 9 

Current variable value : 8 

Current variable value : 7 

Current variable value : 6 

Good bye! 

The continue Statement: 

The continue statement in Python returns the control to the beginning of the while 

loop. The continue statement rejects all the remaining statements in the current iteration of 

the loop and moves the control back to the top of the loop. 

The continue statement can be used in both while and for loops. 

Example: 

#!/usr/bin/python 

 

for letter in 'Python':     # First Example 

   if letter == 'h': 

      continue 
   print 'Current Letter :', letter 

 

var = 10                    # Second Example 

while var > 0:               

   var = var -1 

   if var == 5: 

      continue 

   print 'Current variable value :', var 

print "Good bye!" 

This will produce following result: 

Current Letter : P 

Current Letter : y 

Current Letter : t 

Current Letter : o 

19



Current Letter : n 

Current variable value : 10 

Current variable value : 9 

Current variable value : 8 

Current variable value : 7 

Current variable value : 6 

Current variable value : 4 

Current variable value : 3 

Current variable value : 2 

Current variable value : 1 

Good bye! 

The else Statement Used with Loops 

Python supports to have an else statement associated with a loop statements. 

 If the else statement is used with a for loop, the else statement is executed when the 

loop has exhausted iterating the list. 

 If the else statement is used with a while loop, the else statement is executed when 

the condition becomes false. 

Example: 

The following example illustrates the combination of an else statement with a for 

statement that searches for prime numbers from 10 through 20. 

#!/usr/bin/python 

 

for num in range(10,20):  #to iterate between 10 to 20 

   for i in range(2,num): #to iterate on the factors of the number 

      if num%i == 0:      #to determine the first factor 

         j=num/i #to calculate the second factor 

         print '%d equals %d * %d' % (num,i,j) 

         break #to move to the next number, the #first FOR 

   else:        # else part of the loop 

      print num, 'is a prime number' 

This will produce following result: 

10 equals 2 * 5 

11 is a prime number 

12 equals 2 * 6 

13 is a prime number 

14 equals 2 * 7 

15 equals 3 * 5 

16 equals 2 * 8 

17 is a prime number 

18 equals 2 * 9 

19 is a prime number 

Similar way you can use else statement with while loop. 

20



The pass Statement: 

The pass statement in Python is used when a statement is required syntactically but you 

do not want any command or code to execute. 

The pass statement is a null operation; nothing happens when it executes. The pass is 

also useful in places where your code will eventually go, but has not been written yet (e.g., 

in stubs for example): 

Example: 

#!/usr/bin/python 

 

for letter in 'Python':  

   if letter == 'h': 

      pass 
      print 'This is pass block' 

   print 'Current Letter :', letter 

 

print "Good bye!" 

This will produce following result: 

Current Letter : P 

Current Letter : y 

Current Letter : t 

This is pass block 

Current Letter : h 

Current Letter : o 

Current Letter : n 

Good bye! 

 

DISPLAY PRIME NUMBERS 

# Python program to display all the prime numbers within an interval 

 

lower = 900 

upper = 1000 

 

print("Prime numbers between", lower, "and", upper, "are:") 

 

for num in range(lower, upper + 1): 

   # all prime numbers are greater than 1 

   if num > 1: 

       for i in range(2, num): 

           if (num % i) == 0: 

               break 

       else: 

           print(num) 

 

 

21



Output 

Prime numbers between 900 and 1000 are: 

907 

911 

919 

929 

937 

941 

947 

953 

967 

971 

977 

983 

991 

997 

 

One-dimensional random walk An elementary example of a random walk is the 

random walk on the integer number line, which starts at 0 and at each step moves +1 or ?1 

with equal probability. 

So lets try to implement the 1-D random walk in python. 

filter_none 

edit 

play_arrow 

brightness_4 

# Python code for 1-D random walk.  

import random  

import numpy as np  

import matplotlib.pyplot as plt  

   

# Probability to move up or down  

prob = [0.05, 0.95]    

   

# statically defining the starting position  

start = 2   

positions = [start]  

  # creating the random points  

rr = np.random.random(1000)  

downp = rr < prob[0]  

upp = rr > prob[1]  

    

for idownp, iupp in zip(downp, upp):  

    down = idownp and positions[-1] > 1 

    up = iupp and positions[-1] < 4 

    positions.append(positions[-1] - down + up)  

   

22



# plotting down the graph of the random walk in 1D  

plt.plot(positions)  

plt.show()  

 

Prime Numbers 

A prime number is an integer number greater than 1 whose only factors are 1 and itself.  

The first few prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, 23 and 29.  

 

   To check whether a given number (num) is a prime number, first divide it by 2. If the 

result is an integer number (i.e., num is divisible by 2 or remainder of num/2 is zero or num % 

2 is 0) then num is not a prime number. If not, try to divide it by prime numbers 3, 5, 7, 11, … 

, up to num-1 or divide it by 3, 4, 5, …. , up to num-1. If num is not divisible up to num-1 then 

num is a prime number. 

  

a) Coding: (using for statement) 

 

# To display all the prime numbers within a given interval [Lower, Upper] 

 

lower = int(input("Enter Lower Limit: ")) 

upper = int(input("Enter Upper Limit: ")) 

 

print("Prime numbers between", lower, "and", upper, "are:") 

 

for num in range(lower, upper + 1): 

     if num > 1: 

         for i in range(2, num): 

             if (num % i) == 0: 

                 break 

         else: 

              print(num) 

 

Result:  
Enter Lower Limit: 20 

Enter Upper Limit: 50 

Prime numbers between 20 and 50 are: 

23 

29 

31 

37 

41 

43 

47 

>>> 

 

 b) Coding: (using while statement) 

# Python program to display all the prime numbers within a given interval [Lower, Upper] 

using while statement 

 

23



 

lower = int(input("Enter Lower Limit: ")) 

upper = int(input("Enter Upper Limit: ")) 

 

print("Prime numbers between", lower, "and", upper, "are:") 

 

num=lower 

while(num<=upper): 

     if num > 1: 

         for i in range(2, num): 

             if (num % i) == 0: 

                 break 

         else: 

             print(num) 

     num=num+1 

 

 

Result: 

Enter Lower Limit: 50 

Enter Upper Limit: 100 

Prime numbers between 50 and 100 are: 

53 

59 

61 

67 

71 

73 

79 

83 

89 

97 

>>> 

 

SOLVING QUADRATIC EQUATION 

 

In algebra, a quadratic equation is any equation of the form ax2 + bx + c = 0,  where x is 

unknown and a, b, and c are known numbers. The numbers a, b, and c are the coefficients of 

the equation. 

    

            Examples:  x2 + 5x + 6 = 0,  4x2 + 5x + 8 = 0. 

    

  The values of x that satisfy the equation are called solutions or roots of the equation. A 

quadratic equation has always two roots. It can be found by computing d = b2 - 4ac. The 

value of d is zero or +ve or -ve. 

 

  i) If d = 0 then then the roots are real and equal. They are root1 = -b/(2a) and root2 = -

b/(2a). 

 ii) If d > 0 then the roots are real and different. They are root1=-b+√d/(2a) and root2=-

b-√d/(2a). 

24

https://en.wikipedia.org/wiki/Coefficient


iii) If d < 0 then the roots are complex or imaginary. Roots are of the form p + iq and p - 

iq, where p is the real part of the root and q is the imaginary part of the root. The real part of 

the root is p = -b/(2a) and the imaginary part is q = √-d/(2a).  

 

Coding: 

 

# Finding the roots of quadratic equation ax2 + bx + c = 0 

 

# import math and complex math modules 

 

import math,cmath 

 

a,b,c= (input("Enter a, b and c: ")).split() 

a,b,c =[int(a),int(b),int(c)] 

 

d = (b**2) - (4*a*c) 

 

if d==0: 

    sol1 = -b/(2*a) 

    sol2 = -b/(2*a) 

    print("Roots are real and equal") 

   

elif d>0: 

    sol1 = (-b-math.sqrt(d))/(2*a) 

    sol2 = (-b+math.sqrt(d))/(2*a) 

    print("Roots are real and different") 

   

elif d<0: 

    sol1 = (-b-cmath.sqrt(d))/(2*a) 

    sol2 = (-b+cmath.sqrt(d))/(2*a) 

    print("Roots are imaginary") 

   

print('{0} and {1}'.format(sol1,sol2)) 

 

Result: 
Enter a, b and c: 1 4 4 

Roots are real and equal 

-2.0 and -2.0 

>>> 

Enter a, b and c: 1 5 6 

Roots are real and different 

-3.0 and -2.0 

>>> 

Enter a, b and c: 1 2 3 

Roots are imaginary 

(-1-1.4142135623730951j) and (-1+1.4142135623730951j) 

>>> 

 

 

25



 

18CSPC405 – PYTHON PROGRAMMING 

Unit II - Python Functions 

PYTHON MATHEMATICAL FUNCTIONS 

List of Functions in Python Math Module 

Function Description 

ceil(x) Returns the smallest integer greater than or equal to x. 

copysign(x, y) Returns x with the sign of y 

fabs(x) Returns the absolute value of x 

factorial(x) Returns the factorial of x 

floor(x) Returns the largest integer less than or equal to x 

fmod(x, y) Returns the remainder when x is divided by y 

frexp(x) Returns the mantissa and exponent of x as the pair (m, e) 

fsum(iterable) Returns an accurate floating point sum of values in the iterable 

isfinite(x) Returns True if x is neither an infinity nor a NaN (Not a Number) 

isinf(x) Returns True if x is a positive or negative infinity 

isnan(x) Returns True if x is a NaN 

ldexp(x, i) Returns x * (2**i) 

modf(x) Returns the fractional and integer parts of x 

trunc(x) Returns the truncated integer value of x 

exp(x) Returns e**x 

 

STRING AND USER DEFINED FUNCTIONS 

User defined function. In Python, a user-defined function's declaration begins with the keyword def 

and followed by the function name. The function may take arguments(s) as input within the opening and 

closing parentheses, just after the function name followed by a colon.In Python, a user-defined function's 

declaration begins with the keyword def and followed by the  function name. 

 

 26



 

 The function may take arguments(s) as input within the opening and closing parentheses, just after the 

function name followed by a colon. 

 After defining the function name and arguments(s) a block of program statement(s) start at the next line 

and these statement(s) must be indented. 

Advantages of user defined functions: 

 The programmer can write their own functions which are known as user defined 

function. These functions can create by using def keyword. 

Example: 

add(), sub() 

 

ELEMENTS OF USER DEFINED FUNCTIONS 

There are two elements in user defined function. 

1. function definition 

2. function call 

 FUNCTION DEFINITION 

A function definition specifies the name of a new function and the sequence of 

statements that execute when the function is called. 

Syntax: 
 

 
 def is a keyword that indicates that this is a function definition. 

 The rules for function names are the same as for variable names 

 The first line of the function definition is called the header; the rest is called body of 

function. 

 The header has to end with a colon and the body has to be indented. The function 

contains any number of statements. 

 parameter list contains list of values used inside the function. 

 

example: 

def add(): 

a=eval(input(“enter a value”)) 

b=eval(input(“enter a value”)) 

c=a+b 

print(c) 

The math module is a standard module in Python and is always available. To use mathematical 

functions under this module, you have to import the module using import math.  

It gives access to the underlying C library functions. 
27

https://www.programiz.com/python-programming/modules


List of Functions in Python Math Module 

Function Description 

ceil(x) Returns the smallest integer greater than or equal to x. 

copysign(x, y) Returns x with the sign of y 

fabs(x) Returns the absolute value of x 

factorial(x) Returns the factorial of x 

floor(x) Returns the largest integer less than or equal to x 

fmod(x, y) Returns the remainder when x is divided by y 

frexp(x) Returns the mantissa and exponent of x as the pair (m, e) 

fsum(iterable) Returns an accurate floating point sum of values in the iterable 

isfinite(x) Returns True if x is neither an infinity nor a NaN (Not a Number) 

isinf(x) Returns True if x is a positive or negative infinity 

isnan(x) Returns True if x is a NaN 

ldexp(x, i) Returns x * (2**i) 

modf(x) Returns the fractional and integer parts of x 

trunc(x) Returns the truncated integer value of x 

exp(x) Returns e**x 

expm1(x) Returns e**x - 1 

 

Strings: 

 String is defined as a continues set of characters represented in quotation marks (either single quotes 

( ‘ ) or double quotes ( “ ). 

 An individual character in a string is accessed using a subscript (index). 

 The subscript should always be an integer (positive or negative). 

 A subscript starts from 0 to n-1. 

 Strings are immutable i.e. the contents of the string cannot be changed after it is created. 

 Python will get the input at run time by default as a string. 

 

 

28



 Python does not support character data type. A string of size 1 can be treated as characters. 

1. single quotes (' ') 

2. double quotes (" ") 

3. triple quotes(“”” “”””) 

 

Operations on string: 

1. Indexing 

2. Slicing 

3. Concatenation 

4. Repetitions 

5. Member ship 

 

 

 

indexing 
>>>a=”HELLO” 

>>>print(a[0]) 

>>>H 

>>>print(a[-1]) 

>>>O 

 Positive indexing helps in accessing the string from 

the beginning 

 Negative subscript helps in accessing the string 

from the end. 

 

Slicing: 
Print[0:4] – HELL 

Print[ :3] – HEL 

Print[0: ]- 

HELLO 

The Slice[n : m] operator extracts sub string from the 

strings. 

A segment of a string is called a slice. 

 

Concatenation 

a=”save

” 

b=”eart

h” 

print(a+

b) 

saveeart

h 

The + operator joins the text on both sides of the 

operator. 

 

Repetitions: 

a=”panimalar ” 

print(3*a) 

panimalarpanimalar 

panimalar 

The * operator repeats the string on the left hand side 

times the value on right hand side. 

 
Membership: 

 
>>> s="good morning" 
>>>"m" 

in s 
True 
>>> "a" not 
in s True 

 
Using membership operators to check a 
particular character is in string or not. 
Returns true if present 

 29



ACCESSING CHARACTERS IN PYTHON 

In Python, individual characters of a String can be accessed by using the method of Indexing. Indexing 

allows negative address references to access characters from the back of the String, e.g. -1 refers to the 

last character, -2 refers to the second last character and so on. 

While accessing an index out of the range will cause an IndexError. Only Integers are allowed to be 

passed as an index, float or other types will cause a TypeError. 

 

INTRODUCTION TO OBJECT AND METHODS 

What Is Object-Oriented Programming (OOP)? 

Object-oriented Programming, or OOP for short, is a programming paradigm which provides a means of 

structuring programs so that properties and behaviors are bundled into individual objects. 

For instance, an object could represent a person with a name property, age, address, etc., with behaviors 

like walking, talking, breathing, and running. Or an email with properties like recipient list, subject, 

body, etc., and behaviors like adding attachments and sending. 

Put another way, object-oriented programming is an approach for modeling concrete, real-world things 

like cars as well as relations between things like companies and employees, students and teachers, etc. 

OOP models real-world entities as software objects, which have some data associated with them and can 

perform certain functions. 

Another common programming paradigm is procedural programming which structures a program like a 

recipe in that it provides a set of steps, in the form of functions and code blocks, which flow sequentially 

in order to complete a task. 

FORMATTING NUMBERS AND STRINGS 

Basic formatting 

Simple positional formatting is probably the most common use-case. Use it if the order of your arguments 

is not likely to change and you only have very few elements you want to concatenate. 

Since the elements are not represented by something as descriptive as a name this simple style should only 

be used to format a relatively small number of elements. 

Old 

'%s %s' % ('one', 'two') 

New 

'{} {}'.format('one', 'two') 

Output 

one two 

Old 

'%d %d' % (1, 2) 

New 

'{} {}'.format(1, 2) 

30

http://en.wikipedia.org/wiki/Programming_paradigm


 

Output 

1 2 

With new style formatting it is possible (and in Python 2.6 even mandatory) to give placeholders an 

explicit positional index. 

This allows for re-arranging the order of display without changing the arguments. 

This operation is not available with old-style formatting. 

New 

'{1} {0}'.format('one', 'two') 

Output 

two one 

Value conversion 

The new-style simple formatter calls by default the __format__() method of an object for its 

representation. If you just want to render the output of str(...) or repr(...) you can use the !s or !r conversion 

flags. 

In %-style you usually use %s for the string representation but there is %r for a repr(...) conversion. 

Setup 

class Data(object): 

 

    def __str__(self): 

        return 'str' 

 

    def __repr__(self): 

        return 'repr' 

Old 

'%s %r' % (Data(), Data()) 

New 

'{0!s} {0!r}'.format(Data()) 

Output 

str repr 

In Python 3 there exists an additional conversion flag that uses the output of repr(...) but 

uses ascii(...) instead. 

Setup 

class Data(object): 

 

    def __repr__(self): 

        return 'räpr' 

Old 

'%r %a' % (Data(), Data()) 

31

https://docs.python.org/3/reference/datamodel.html#object.__format__


 

 

New 

'{0!r} {0!a}'.format(Data()) 

Output 

räpr r\xe4pr 

Padding and aligning strings 

By default values are formatted to take up only as many characters as needed to represent the content. It is 

however also possible to define that a value should be padded to a specific length. 

Unfortunately the default alignment differs between old and new style formatting. The old style defaults to 

right aligned while for new style it's left. 

Align right: 

Old 

'%10s' % ('test',) 

New 

'{:>10}'.format('test') 

Output 

      test 

Align left: 

Old 

'%-10s' % ('test',) 

New 

'{:10}'.format('test') 

Output 

test       

Again, new style formatting surpasses the old variant by providing more control over how values are 

padded and aligned. 

You are able to choose the padding character: 

This operation is not available with old-style formatting. 

New 

'{:_<10}'.format('test') 

Output 

test______ 

And also center align values: 

This operation is not available with old-style formatting. 

32



 

New 

'{:^10}'.format('test') 

Output 

   test    

When using center alignment where the length of the string leads to an uneven split of the padding 

characters the extra character will be placed on the right side: 

This operation is not available with old-style formatting. 

New 

'{:^6}'.format('zip') 

Output 

 zip   

Truncating long strings 

Inverse to padding it is also possible to truncate overly long values to a specific number of characters. 

The number behind a . in the format specifies the precision of the output. For strings that means that the 

output is truncated to the specified length. In our example this would be 5 characters. 

Old 

'%.5s' % ('xylophone',) 

New 

'{:.5}'.format('xylophone') 

Output 

xylop 

Combining truncating and padding 

It is also possible to combine truncating and padding: 

Old 

'%-10.5s' % ('xylophone',) 

New 

'{:10.5}'.format('xylophone') 

Output 

xylop      

Numbers 

Of course it is also possible to format numbers. 

Integers: 

33



 

 

Old 

'%d' % (42,) 

New 

'{:d}'.format(42) 

Output 

42 

Floats: 

Old 

'%f' % (3.141592653589793,) 

New 

'{:f}'.format(3.141592653589793) 

Output 

3.141593 

Padding numbers 

Similar to strings numbers can also be constrained to a specific width. 

Old 

'%4d' % (42,) 

New 

'{:4d}'.format(42) 

Output 

  42 

Again similar to truncating strings the precision for floating point numbers limits the number of positions 

after the decimal point. 

For floating points the padding value represents the length of the complete output. In the example below 

we want our output to have at least 6 characters with 2 after the decimal point. 

Old 

'%06.2f' % (3.141592653589793,) 

New 

'{:06.2f}'.format(3.141592653589793) 

Output 

003.14 

For integer values providing a precision doesn't make much sense and is actually forbidden in the new 

style (it will result in a ValueError). 

34



 

 

Old 

'%04d' % (42,) 

New 

'{:04d}'.format(42) 

Output 

0042 

Signed numbers 

By default only negative numbers are prefixed with a sign. This can be changed of course. 

Old 

'%+d' % (42,) 

New 

'{:+d}'.format(42) 

Output 

+42 

Use a space character to indicate that negative numbers should be prefixed with a minus symbol and a 

leading space should be used for positive ones. 

Old 

'% d' % ((- 23),) 

New 

'{: d}'.format((- 23)) 

Output 

-23 

Old 

'% d' % (42,) 

New 

'{: d}'.format(42) 

Output 

 42 

New style formatting is also able to control the position of the sign symbol relative to the padding. 

This operation is not available with old-style formatting. 

New 

'{:=5d}'.format((- 23)) 

Output 

-  23 

35



 

New 

'{:=+5d}'.format(23) 

Output 

+  23 

Named placeholders 

Both formatting styles support named placeholders. 

Setup 

data = {'first': 'Hodor', 'last': 'Hodor!'} 

Old 

'%(first)s %(last)s' % data 

New 

'{first} {last}'.format(**data) 

Output 

Hodor Hodor! 

.format() also accepts keyword arguments. 

This operation is not available with old-style formatting. 

New 

'{first} {last}'.format(first='Hodor', last='Hodor!') 

Output  

Hodor Hodor! 

   

STRING OPERATIONS 

 

  A string is a data type used in programming, such as an integer and floating point numbers, but it is used to 

represent text rather than numbers. It is comprised of a set of characters. Character array is used to store a 

string. 

 Examples: “Annamalai”, “2345” 

 

     The main operations on string are: length of a string (counting number of characters in the string), 

reversing a string, concatenating two strings together and comparing two strings. In Python, the arithmetic 

operator ‘+’ is used for string concatenation and the relational operators  ‘<’, ‘<=’, ‘>’, ‘>=’ ‘==”  are used 

for string comparison. In Python, a function is defined using the def keyword. 

 

Coding: 

 

# String Operations: String Length, String Reverse, String Concatenation and String Comparison 

 

def strlen(str):  

     counter = 0 

     while str[counter:]:  

          counter += 1 

     return counter  

   

 

 

 
36



def strrev(str):  

      rstr="" 

      l=strlen(str) 

      while l>0: 

            rstr = rstr + str[l-1] 

            l=l-1 

      return rstr 

     

def strcat(st1,st2): 

      return(st1+st2) 

     

def strcmp(st1,st2): 

      if(st1==st2): 

           print(st1 + " and " + st2 + " are same") 

      elif (st1>st2): 

           print(st1 + " comes after " + st2 +" in the Dictionary") 

      else: 

           print(st1 + " comes before " + st2 +" in the Dictionary") 

         

print("String Functions:\n    1. String Length \n    2. String Reverse \n    3. String Concatenation\n    4. 

String Comparison\n") 

n=int(input("Enter your Choice: ")) 

if(n==1): 

     str = input("Enter a String: ") 

     print("Length of the string is:",strlen(str))  

elif (n==2): 

     str = input("Enter a String: ") 

     print("Reversed String is:", strrev(str)) 

elif (n==3): 

     str1 = input("Enter the first String: ") 

     str2 = input("Enter the second String: ") 

     print("Concatenated string is:", strcat(str1,str2)) 

elif (n==4): 

     str1 = input("Enter the first String: ") 

     str2 = input("Enter the second String: ") 

     strcmp(str1,str2) 

else: 

     print("Invalid Choice") 

 

Result: 

 

String Functions: 

    1. String Length  

    2. String Reverse  

    3. String Concatenation 

    4. String Comparison 

 

Enter your Choice: 1 

Enter a String: annamalai 

Length of the string is: 9 

>>> 

String Functions: 

    1. String Length  

    2. String Reverse  

    3. String Concatenation 

    4. String Comparison 

 

Enter your Choice: 2 37



Enter a String: university 

Reversed String is: ytisrevinu 

 

>>> 

String Functions: 

    1. String Length  

    2. String Reverse  

    3. String Concatenation 

    4. String Comparison 

 

Enter your Choice: 3 

Enter the first String: annamalai 

Enter the second String: university 

Concatenated string is: annamalaiuniversity 

>>> 

 

String Functions: 

    1. String Length  

    2. String Reverse  

    3. String Concatenation 

    4. String Comparison 

 

Enter your Choice: 4 

Enter the first String: anna 

Enter the second String: malai 

anna comes before malai in the Dictionary 

>>> 

 

DRAWING VARIOUS SHAPES AND COLOURS AND FONTS 

PyGame and Python programming tutorial video, we cover how to draw shapes with PyGame's built in 

drawing functionality. We can do things like draw specific pixels, lines, circles, rectangles, and any polygon 

we want by simply specifying the points to draw between. Let's get started! 

import pygame 

 

pygame.init() 

 

white = (255,255,255) 

black = (0,0,0) 

 

red = (255,0,0) 

green = (0,255,0) 

blue = (0,0,255) 

 

gameDisplay = pygame.display.set_mode((800,600)) 

gameDisplay.fill(black) 

Typical stuff above, now let's cover what would be used to draw a pixel: 

pixAr = pygame.PixelArray(gameDisplay) 

pixAr[10][20] = green 

 

 38



 

Alright, so what have we done above? What we're doing is assigning the entire pixel array to a value, 

referencing it using pygame.PixelArray. So what this function does is it returns the pixel array of the 

specified surface (which is the entire display in our case). Then, we're able to modify it. So, we specify 

pixAr[10][20], which means the pixel residing at (10,20), then we're able to re-assign it. In our case, we 

call it green. 

pygame.draw.line(gameDisplay, blue, (100,200), (300,450),5) 

Drawing lines, above, is easy enough. The function just asks where do we want to draw it, what color do we 

want it, and then we specify the two coordinate pairs that we want to draw a line between. 

pygame.draw.rect(gameDisplay, red, (400,400,50,25)) 

We've already extensively covered the drawing of rectangles in this series, but this specific "drawing things" 

tutorial wouldn't be complete without it. This function asks where to draw, what color, and then asks for a 

final tuple that contains: the top right x and y, followed by width, then height. 

pygame.draw.circle(gameDisplay, white, (150,150), 75) 

Here we draw a circle. This function asks where to draw, what color, what is the center point of the circle, 

and what is the radius. There is another parameter that you can add which is width. 

pygame.draw.polygon(gameDisplay, green, ((25,75),(76,125),(250,375),(400,25),(60,540))) 

Finally, we have polygons. This function asks where to draw, what color, and then asks for a long tuple, of 

tuples, containing the points of the polygon. 

while True: 

    for event in pygame.event.get(): 

        if event.type == pygame.QUIT: 

            pygame.quit() 

            quit() 

 

    pygame.display.update() 

 

DEFINING A FUNCTIONS 

FUNCTIONS: 

 

 Function is a sub program which consists of set of instructions used to perform a specific task. 

 A large program is divided into basic building blocks called function. 

 

NEED FOR FUNCTION 

 When the program is too complex and large they are divided into parts. Each part is separately 

coded and combined into single program. Each subprogram is called as function 

Built in function description 

>>>max(3,4) 4 # returns largest element 

>>>min(3,4) 3 # returns smallest element 

39



 

 

 Debugging, Testing and maintenance becomes easy when the program is divided into subprograms. 

 Functions are used to avoid rewriting same code again and again in a program. 

 Function provides code re-usability 

 The length of the program is reduced. 

 

TYPES OF FUNCTION: 

1. Built in function 

2. user defined function 

BUILT IN FUNCTION 

 Built in functions are the functions that are already created and stored in python. These built in 

functions are always available for usage and accessed by a programmer. 

 It cannot be modified. 

FUNCTION PROTOTYPES: 

Based on arguments and return type functions are classified into 4 types. 

1. Function without arguments and without return type 

2. Function with arguments and without return type 

3. Function without arguments and with return type 

4. Function with arguments and with return type 

 

1. Function without arguments and without return type 

In this type no argument is passed through the function call and no output is return to main function 

The sub function will read the input values perform the operation and print the result in the same block 

 

2. Function with arguments and without return type 

Arguments are passed through the function call but output is not return to the main function 

 

 

 

 

>>>len("hello") 

5 

#returns length of an object 

>>>range(2,8,1) [2, 

3, 4, 5, 6, 7] 

#returns range of given values 

>>>round(7.8) – 

8.0 

#returns rounded integer of the given number 

>>>chr(5) 

\x05' 

#returns a character (a string) from an integer 

>>>float(5) 

5.0 

#returns float number from string or integer 

>>>int(5.0) 

5 

# returns integer from string or float 

>>>pow(3,5) 

243 

#returns power of given number 

>>>type( 5.6) 

<type 'float'> 

#returns data type of object to which it belongs 

>>>t=tuple([4,6.0,7]) 

(4, 6.0, 7) 

# to create tuple of items from list 

>>>print("good morning") Good 

morning 

# displays the given object 

  

40



 

 

3. Function without arguments and with return type 

In this type no argument is passed through the function call but output is return to the main 

function. 

 

4. Function with arguments and with return type 

In this type arguments are passed through the function call and output is return to the main function 

 

41



 

 with return type 

 Without argument   With argument 

def add(): 

a=int(input("enter a")) 

b=int(input("enter b")) c=a+b 

return c 

c=add() 

print(c) 

def add(a,b): 

c=a+b return c 

a=int(input("enter a")) b=int(input("enter 

b")) c=add(a,b) 

print(c) 

OUTPUT: 

enter a 5 

enter b 10 

15 

OUTPUT: 

enter a 5 

enter b 10 

15 

 

    PARAMETERS AND ARGUMENTS: 

Parameters: 

 Parameters are the value(s) provided in the parenthesis when we write function 

header. 

 These are the values required by function to work. 

 If there is more than one value required, all of them will be listed in parameter list 

separated by comma. 

Example: def add(a,b): 

Arguments : 

 Arguments are the value(s) provided in function call statement. 

 List of arguments should be supplied in same way as parameters are listed. 

 Bounding of parameters to arguments is done 1:1, and so there should be same 

number and type of arguments as mentioned in parameter list. 

Example: add(a,b) 

Return Statement: 

 The return statement is used to exit a function and go back to the place from 

 without return type 

 Without argument     With argument  

  

def add(): 

a=int(input("enter a")) 

b=int(input("enter b")) 

c=a+b 

print(c) 

add() 

def add(a,b): 

c=a+b 

print(c) 

a=int(input("enter a")) 

b=int(input("enter b")) add(a,b) 

OUTPUT: 

enter a 5 

enter b 10 

15 

OUTPUT: 

enter a 5 

enter b 10 

15 

42



where it was called. 

 If the return statement has no arguments, then it will not return any values. But 

exits from function. 

Syntax: Example: 

 

return variable 

def add(a,b): 

c=a+b return 

c 

x=5 

y=4 

c=add(a,b) 

print(c) 

 

 

ARGUMENTS TYPES: 

You can call a function by using the following types of formal arguments: 

1. Required arguments 

2. Keyword arguments 

3. Default arguments 

4. Variable-length arguments 

Required Arguments: 

The number of arguments in the function call should match exactly with the function 

definition. 

Example Output: 

def student( name, roll ): 

print(name,roll) 

student("george",98) 

George 

98 

def student( name, roll ): 

print(name,roll) 

student(101,”rithika”) 

101 

rithika 

def student( name, roll ): 

print(name,roll) 

student(101) 

student() missing 1 required positional argument: 

'name' 

def student( name, roll ): 

print(name,roll) 

student() 

student() missing 2 required positional arguments: 

'roll' and 'name' 

 

Keyword Arguments: 

Python interpreter is able to use the keywords provided to match the values with parameters 

even though if they are arranged in out of order. 

 

Example Output: 

def student( name, roll,mark): bala 

43



print(name,roll,mark) 102 

student (mark=90,roll=102,name="bala") 90 

 
 

TURTLE COMMANDS 

“Turtle” is a python feature like a drawing board, which lets you command a turtle to draw all 

over it! 

You can use functions like turtle.forward(...) and turtle.left(...) which can move the turtle around. 

Before you can use turtle, you have to import it. We recommend playing around with it in the 

interactive interpreter first, as there is an extra bit of work required to make it work from files. 

Just go to your terminal and type: 

import turtle 

 

Turtle graphics is a popular way for introducing programming to kids. It was part of the original 

Logo programming language developed by Wally Feurzeig, Seymour Papert and Cynthia 

Solomon in 1967. 

Imagine a robotic turtle starting at (0, 0) in the x-y plane. After an import turtle, give it the 

command turtle.forward(15), and it moves (on-screen!) 15 pixels in the direction it is facing, 

drawing a line as it moves. Give it the command turtle.right(25), and it rotates in-place 25 

degrees clockwise. 

The object-oriented interface uses essentially two+two classes: 

The TurtleScreen class defines graphics windows as a playground for the drawing turtles. Its 

constructor needs a tkinter.Canvas or a ScrolledCanvas as argument. It should be used 

when turtle is used as part of some application. 

The function Screen() returns a singleton object of a TurtleScreen subclass. This function should 

be used when turtle is used as a standalone tool for doing graphics. As a singleton object, 

inheriting from its class is not possible. 

All methods of TurtleScreen/Screen also exist as functions, i.e. as part of the procedure-oriented 

interface. 

def student( name, roll,mark): bala 

print(name,roll,mark) 102 

student (name="bala", roll=102,mark=90) 90 

44

https://docs.python.org/3/library/turtle.html#turtle.TurtleScreen
https://docs.python.org/3/library/turtle.html#turtle.ScrolledCanvas
https://docs.python.org/3/library/turtle.html#module-turtle
https://docs.python.org/3/library/turtle.html#turtle.Screen
https://docs.python.org/3/library/turtle.html#turtle.TurtleScreen
https://docs.python.org/3/library/turtle.html#module-turtle


RawTurtle (alias: RawPen) defines Turtle objects which draw on a TurtleScreen. Its constructor 

needs a Canvas, ScrolledCanvas or TurtleScreen as argument, so the RawTurtle objects know 

where to draw. 

Derived from RawTurtle is the subclass Turtle (alias: Pen), which draws on 

“the” Screen instance which is automatically created, if not already present. 

All methods of RawTurtle/Turtle also exist as functions, i.e. part of the procedure-oriented 

interface. 

The procedural interface provides functions which are derived from the methods of the 

classes Screen and Turtle. They have the same names as the corresponding methods. A screen 

object is automatically created whenever a function derived from a Screen method is called. An 

(unnamed) turtle object is automatically created whenever any of the functions derived from a 

Turtle method is called. 

To use multiple turtles on a screen one has to use the object-oriented interface. 

METHODS OF RAWTURTLE/TURTLE AND CORRESPONDING FUNCTIONS 

Most of the examples in this section refer to a Turtle instance called turtle. 

Turtle motion 

turtle.forward(distance) 

turtle.fd(distance) 

Parameters 

distance – a number (integer or float) 

Move the turtle forward by the specified distance, in the direction the turtle is headed. 

>>> turtle.position() 

(0.00,0.00) 

>>> turtle.forward(25) 

>>> turtle.position() 

(25.00,0.00) 

>>> turtle.forward(-75) 

>>> turtle.position() 

(-50.00,0.00) 

turtle.back(distance) 

turtle.bk(distance) 

45

https://docs.python.org/3/library/turtle.html#turtle.RawTurtle
https://docs.python.org/3/library/turtle.html#turtle.RawPen
https://docs.python.org/3/library/turtle.html#turtle.TurtleScreen
https://docs.python.org/3/library/turtle.html#turtle.Turtle
https://docs.python.org/3/library/turtle.html#turtle.Screen
https://docs.python.org/3/library/turtle.html#turtle.Screen
https://docs.python.org/3/library/turtle.html#turtle.Turtle


turtle.backward(distance) 

Parameters 

distance – a number 

Move the turtle backward by distance, opposite to the direction the turtle is headed. Do 

not change the turtle’s heading. 

>>> turtle.position() 

(0.00,0.00) 

>>> turtle.backward(30) 

>>> turtle.position() 

(-30.00,0.00) 

turtle.right(angle) 

turtle.rt(angle) 

Parameters 

angle – a number (integer or float) 

Turn turtle right by angle units. (Units are by default degrees, but can be set via 

the degrees() and radians() functions.) Angle orientation depends on the turtle mode, 

see mode(). 

>>> turtle.heading() 

22.0 

>>> turtle.right(45) 

>>> turtle.heading() 

337.0 

turtle.left(angle) 

turtle.lt(angle) 

Parameters 

angle – a number (integer or float) 

Turn turtle left by angle units. (Units are by default degrees, but can be set via 

the degrees() and radians() functions.) Angle orientation depends on the turtle mode, 

see mode(). 

46

https://docs.python.org/3/library/turtle.html#turtle.degrees
https://docs.python.org/3/library/turtle.html#turtle.radians
https://docs.python.org/3/library/turtle.html#turtle.mode
https://docs.python.org/3/library/turtle.html#turtle.degrees
https://docs.python.org/3/library/turtle.html#turtle.radians
https://docs.python.org/3/library/turtle.html#turtle.mode


>>> turtle.heading() 

22.0 

>>> turtle.left(45) 

>>> turtle.heading() 

67.0 

turtle.goto(x, y=None) 

turtle.setpos(x, y=None) 

turtle.setposition(x, y=None) 

Parameters 

 x – a number or a pair/vector of numbers 

 y – a number or None 

If y is None, x must be a pair of coordinates or a Vec2D (e.g. as returned by pos()). 

Move turtle to an absolute position. If the pen is down, draw line. Do not change the 

turtle’s orientation. 

 >>> tp = turtle.pos() 

 >>> tp 

 (0.00,0.00) 

 >>> turtle.setpos(60,30) 

 >>> turtle.pos() 

 (60.00,30.00) 

 >>> turtle.setpos((20,80)) 

 >>> turtle.pos() 

 (20.00,80.00) 

 >>> turtle.setpos(tp) 

 >>> turtle.pos() 

 (0.00,0.00) 

turtle.setx(x) 

Parameters 

x – a number (integer or float) 

Set the turtle’s first coordinate to x, leave second coordinate unchanged. 

>>> turtle.position() 

(0.00,240.00) 

>>> turtle.setx(10) 

47

https://docs.python.org/3/library/turtle.html#turtle.Vec2D
https://docs.python.org/3/library/turtle.html#turtle.pos


>>> turtle.position() 

(10.00,240.00) 

turtle.sety(y) 

Parameters 

y – a number (integer or float) 

Set the turtle’s second coordinate to y, leave first coordinate unchanged. 

>>> turtle.position() 

(0.00,40.00) 

>>> turtle.sety(-10) 

>>> turtle.position() 

(0.00,-10.00) 

turtle.setheading(to_angle) 

turtle.seth(to_angle) 

Parameters 

to_angle – a number (integer or float) 

Set the orientation of the turtle to to_angle. Here are some common directions in degrees: 

standard mode logo mode 

0 – east 0 - north 

90 – north 90 - east 

180 – west 180 - south 

270 – south 270 - west 

>>> turtle.setheading(90) 

>>> turtle.heading() 

90.0 

turtle.home() 

Move turtle to the origin – coordinates (0,0) – and set its heading to its start-orientation 

(which depends on the mode, see mode()). 

>>> turtle.heading() 

90.0 

48

https://docs.python.org/3/library/turtle.html#turtle.mode


>>> turtle.position() 

(0.00,-10.00) 

>>> turtle.home() 

>>> turtle.position() 

(0.00,0.00) 

>>> turtle.heading() 

0.0 

 

DEFAULT ARGUMENTS: 

Assumes a default value if a value is not provided in the function call for that argument. 

 

 

Variable length Arguments 

If we want to specify more arguments than specified while defining the function, variable length 

arguments are used. It is denoted by * symbol before parameter. 

 

Example Output: 

def student( name,*mark): bala 

print(name,mark) 102 

student (“bala”,90) 90 

def student( name, roll,mark): raja 

print("name,roll,mark) 90 

student (“raja”,90,70,80) 70 

80 

 

GENERATE RANDOM ASCII CHARACTERS IN PYTHON 

 Generate a random string of a fixed length. 

 Generate a random string with lower case and upper case. 

Example Output: 

def student( name=”raja”, roll=101,mark=50): bala 

print(name,roll,mark) 102 

student (mark=90,roll=102,name="bala") 90 

def student( name, roll,mark): bala 

print(name,roll,mark) 102 

student (name="bala", roll=102) 50 

def student( name, roll,mark): bala 

print(name,roll,mark) 102 

student () 90 

49



 Generate a random alphanumeric string with letters and numbers. 

 Generate a random string password which contains the letters, digits, and special 

characters. 

 Use the UUID and secrets module to generate a secure random string for a sensitive 

application. 

Call string.ascii_letters to get a string of the lowercase alphabet followed by the uppercase 

alphabet. Use random.choice(seq) with the string of alphabets as seq to generate a random 

letter from the string. 

lower_upper_alphabet = string.ascii_letters 

 

random_letter = random.choice(lower_upper_alphabet) 

Generate random letter 

 

print(random_letter) 

O U T P U T  

y 

GENERATE A RANDOM STRING OF FIXED LENGTH 

To generate a random string we need to use the following two Python modules. 

The string module contains various string constant which contains the ASCII characters of all 

cases. The string module contains separate constants for lowercase, uppercase letters, digits, and 

special characters. 

random module to perform the random generations. 

Let see the steps to generate a random string of a fixed length of n. 

Use the string constant string.ascii_lowercase to get all the lowercase letters in a single string. 

The string.ascii_lowercase constant contains all lowercase letters. 

I.e., 'abcdefghijklmnopqrstuvwxyz' 

Run for loop n number of times to pick a single character from a string constant using 

a random.choice() function and add it to the string variable using a join function. 

Note: – The random.choice() function used to choose a single character from a list. 

For example, Suppose you want a random string of length 6 then we can execute 

a random.choice() function 6 times to pick a single letter from the string.ascii_lowercase and add 

it to the string variable. Let see the code now. 

50

https://kite.com/python/docs/string.ascii_letters
https://kite.com/python/docs/random.choice
https://pynative.com/python-random-module/
https://pynative.com/python-random-choice/


import random 

import string 

def randomString(stringLength=10): 

    """Generate a random string of fixed length """ 

    letters = string.ascii_lowercase 

    return ''.join(random.choice(letters) for i in range(stringLength)) 

print ("Random String is ", randomString() ) 

print ("Random String is ", randomString(10) ) 

print ("Random String is ", randomString(10) ) 

Output:   

Random String is  ptmihemlzj 

Random String is  dbgxpggrez 

Random String is  wkhhaghero 

Generate a random string of specific letters only 

## Generate a random string of specific characters  

def randString(length=5): 

    #put your letters in the following string 

    your_letters='abcdefghi' 

    return ''.join((random.choice(your_letters) for i in range(length))) 

 

print ("Random String with specific letters ", randString() ) 

print ("Random String with specific letters ", randString(5) ) 

51



Output:   

Random String with specific letters  agbfh 

Random String with specific letters  deifd 

Generate random string with letters and digits in Python 

Many times we need a random string that contains both letters and digit. For example, you want to 

generate a random string like ab23cd, jkml98, 87thki. 

We need to use the string.ascii_letters  and string.digits  constants two get the combinations of letters 

and digits in our random string. Now, Let see how to generate a random string with letters and digits. 

import random 

import string 

def randomStringDigits(stringLength=6): 

    """Generate a random string of letters and digits """ 

    lettersAndDigits = string.ascii_letters + string.digits 

    return ''.join(random.choice(lettersAndDigits) for i in range(stringLength)) 

print ("Generating a Random String including letters and digits") 

print ("First Random String is  ", randomStringDigits(8)) 

print ("Second Random String is ", randomStringDigits(8)) 

print ("Third Random String is  ", randomStringDigits(8)) 

Output:   

Generating a Random String including letters and digits 

First Random String is   zp5bK7Ah 

Second Random String is  w48Nr78j 

Third Random String is   Heq11gr4 

52



18CSPC405 – PYTHON PROGRAMMING 

Unit III – CLASS AND OBJECT 

CLASS AND OBJECTS: 
  
      A class in C++/Java/Python is the building block that leads to object-oriented programming. 

It is an user defined data-type which has data members and member functions. Data members are 

the data variables and member functions are the functions used to manipulate these variables. A 

class is defined in python using the keyword class followed by name of the class.  

 

    An object is an instance of a class. When a class is defined, no memory is allocated but when 

it is instantiated (i.e. an object is created) then the memory is allocated. 
 

    The __init__() function in the class is executed automatically every time the class is being 

used to create a new object.  It is called as a constructor in object oriented terminology. This 

function is used to initialize the data members of the class. 
  
      In most of the object-oriented programming (OOP) languages access specifiers are used to 

limit the access to the variables and functions of a class. Most of the OOP languages use three 

types of access specifiers, they are:  private, public and protected.  In Python, all the variables 

and member functions of a class are public by default.  Adding a prefix  __ (double underscore) 

to the member variable or function makes them to be private. 

 

Coding: 
 

# To find the Euclidean distance between two pints in a three dimensional space using  

#     class and objects. 
# Class called point consists of  a constructor (__init__())  and two functions  

#     distancefromorgin() and distance() 
 

import math 
class point(): 

    def __init__(self,a,b,c): 
        self.x=a 

        self.y=b 
        self.z=c 

    def distancefromorigin(self): 
        return ((self.x ** 2) + (self.y ** 2) +(self.z ** 2)) ** 0.5 

    def distance(self, point2): 
        xdiff = self.x-point2.x 

        ydiff = self.y-point2.y 
        zdiff = self.z-point2.z 

        dist = math.sqrt (xdiff**2 + ydiff**2+ zdiff**2) 
        return dist 
    
x1,y1,z1= (input("Enter the coordinates of a first point P1(x1,y1,z1): ")).split()  
x1,y1,z1 =[int(x1),int(y1), int(z1)] 

x2,y2,z2= (input("Enter the coordinates of a second point P2(x2,y2,z2): ")).split() 

53



x2,y2,z2 =[int(x2),int(y2),int(z2)] 
 

# P1 and P2 are  objects  of point class 
 

p1 = point(x1,y1,z1)  
p2 = point(x2,y2,z2) 

print('Distance from origin to P1:', p1.distancefromorigin()) 
print('Distance from origin to P2:', p2.distancefromorigin()) 

print('Distance from P1 to P2:',p1.distance(p2)) 
 

Result: 
Enter the coordinates of a first point P1(x1,y1,z1): 1 2 3 

1 2 3 
Enter the coordinates of a second point P2(x2,y2,z2): 2 3 4 

2 3 4 
Distance from origin to P1: 3.7416573867739413 

Distance from origin to P2: 5.385164807134504 
Distance from P1 to P2: 1.7320508075688772 

>>>  
CLASS 

 A class will have attributes and methods. 

 A Class is like an object constructor, or a "blueprint" for creating objects. 

 The key word is “class” 

Syntax 

class class_name: 

           statement(s); 

OBJECT 

 An object is an instance of class. 

 A class may have any number of objects. 

 Objects can pass message between them. 

Syntax 

object_name = class_name(parameters); 

Attributes 

 Attributes are the identifiers which can hold the data.  

 These attributes are used inside the class methods. 

 A class may have any number of attributes. 

METHODS 

 Methods are nothing but functions which can do some work. 

 Methods will accept parameters as input and if required return the output. 

54



 Methods can be identified by paranthesis. 

 Example 

Create a class named Person, use the __init__() function to assign values for name and age. 

The __init__() method will be called automatically every time the class is being used to create a new 

object. 

class Person: 

  def __init__(self, name, age): 

    self.name = name 

    self.age = age 

p1 = Person("John", 36) 

print(p1.name) 

print(p1.age) 

 

INITIALISATION USING SELF 

 

SELF 

The self in keyword in Python is used to all the instances in a class. By using the self keyword, one can 

easily access all the instances defined within a class, including its methods and attributes. 

 

init 

__init__ is one of the reserved methods in Python. In object oriented programming, it is known 

as a constructor. The __init__ method can be called when an object is created from the class, and 

access is required to initialize the attributes of the class. 

 

CLASS DEFINITION & INHERITANCE 

CREATING CLASSES 

The class statement creates a new class definition. The name of the class immediately follows the 

keyword class followed by a colon as follows. 

class ClassName: 

   'Optional class documentation string' 

   class_suite 

 The class has a documentation string, which can be accessed via ClassName.__doc__. 

 The class_suite consists of all the component statements defining class members, data attributes 

and functions. 

Example 

Following is the example of a simple Python class. 

55



class Employee: 

   'Common base class for all employees' 

   empCount = 0 

   def __init__(self, name, salary): 

      self.name = name 

      self.salary = salary 

      Employee.empCount += 1 

   def displayCount(self): 

     print "Total Employee %d" % Employee.empCount 

   def displayEmployee(self): 

      print "Name : ", self.name,  ", Salary: ", self.salary 

 The variable empCount is a class variable whose value is shared among all instances of a this 

class. This can be accessed as Employee.empCount from inside the class or outside the class. 

 The first method __init__() is a special method, which is called class constructor or initialization 

method that Python calls when you create a new instance of this class. 

 You declare other class methods like normal functions with the exception that the first argument 

to each method is self. Python adds the self argument to the list for you; you do not need to 

include it when you call the methods. 

PYTHON - PUBLIC, PRIVATE AND PROTECTED ACCESS MODIFIERS 

Classical object-oriented languages, such as C++ and Java, control the access to class resources 

by public, private and protected keywords. Private members of a class are denied access from the 

environment outside the class. They can be handled only from within the class. 

Public members (generally methods declared in a class) are accessible from outside the class. 

The object of the same class is required to invoke a public method. This arrangement of private 

instance variables and public methods ensures the principle of data encapsulation. 

Protected members of a class are accessible from within the class and are also available to its 

sub-classes. No other environment is permitted access to it. This enables specific resources of the 

parent class to be inherited by the child class. 

Python doesn't have any mechanism that effectively restricts access to any instance variable or 

method. Python prescribes a convention of prefixing the name of the variable/method with single 

or double underscore to emulate the behaviour of protected and private access specifiers. 

56



All members in a Python class are public by default. Any member can be accessed from outside 

the class environment. 

CREATING INSTANCE OBJECTS 

To create instances of a class, you call the class using class name and pass in whatever arguments 

its __init__ method accepts. 

"This would create first object of Employee class" 

emp1 = Employee("Zara", 2000) 

"This would create second object of Employee class" 

emp2 = Employee("Manni", 5000) 

Accessing Attributes 

You access the object's attributes using the dot operator with object. Class variable would be 

accessed using class name as follows. 

emp1.displayEmployee() 

emp2.displayEmployee() 

print "Total Employee %d" % Employee.empCount 

 

INHERITANCE: 
 

       Inheritance is a mechanism in which one class (derived class) acquires the property of 

another class (base class).  With inheritance, we can reuse the variables and methods of the 

existing class. The existing class is called base class and the new class is called derived class. 

Hence, inheritance facilitates reusability and is an important concept of object oriented 

programming. Types of inheritance are: single inheritance, multiple inheritance, multi-level 

inheritance, hierarchical inheritance and hybrid inheritance. 
 

    Single inheritance enables a derived class to use the variables and functions defined in an existing 

class. In multiple inheritance, derived class inherits the characteristics and features from more than one 
existing classes.  
 

    In python, syntax for defining single inheritance is class z(x), where x is the name of the base class and 
z is the name of the derived class. Similarly, multiple inheritance is defined using the syntax class z(x, y), 

where x and y are the names of base classes and z is the name of the derived class. 
 

Advantages of inheritance 

 

Inheritance is the capability of one class to derive or inherit the properties from some another 

class. The benefits of inheritance are: 

 

 It represents real-world relationships well. 

 It provides reusability of a code. We don’t have to write the same code again and again. 

Also, it allows us to add more features to a class without modifying it. 

57



 It is transitive in nature, which means that if class B inherits from another class A, then 

all the subclasses of B would automatically inherit from class A. 

Coding: 
 

# person is a base class  
class person:   
     def __init__(self, n, a):   
         self.name = n   
         self.age = a   
  # employee is the class derived from person using single inheritance 

class employee(person): 

     def __init__(self, n,a, d,s): 

         person.__init__(self,n,a) 

         self.designation=d 

         self.salary=s 

 

     def show(self): 

         print("Employee Details: ") 

         print("  Name: ",self.name,"\n  Age:",self.age, "\n  Designation:",self.designation, "\n  

Salary:",self.salary) 

 

#  student is a  base class  

class student:  

    def __init__(self, id, rno):   

        self.studentId = id   

        self.roomno=rno 

       

#  resident is a class derived from person and student using multiple inheritance 

class resident(person, student):    

    def __init__(self, n, a, id,rno):   

        person.__init__(self, n, a)   

        student.__init__(self, id,rno)   

         

    def show(self): 

        print("Resident Details:") 

        print("  Name:", self.name,"\n  Age: ",self.age, "\n  Id:" ,self.studentId,"\n  Room no.:",self.roomno) 

  # Creating objects of employee and resident classes 

e1 =employee("Arun",35,"Data analyst",50000) 

r1 = resident("John", 30, 201900025,203)   

e1.show()   

r1.show() 

 

Result: 

Employee Details:  
  Name:  Arun  

58



  Age: 35  
  Designation: Data analyst  
  Salary: 50000 
Resident Details: 
  Name: John  
  Age:  30  
  Id: 201900025  
  Room no.: 203 
>>>  
 

COMPOSITION 

Composition means that an object knows another object, and explicitly delegates some tasks to 

it. While inheritance is implicit, composition is explicit: in Python, however, things are far more 

interesting than this =). 

First of all let us implement classic composition, which simply makes an object part of the other 

as an attribute. 

 

The primary goal of composition is to relax the coupling between objects. This little example 

shows that now SecurityDoor is an object and no more a Door, which means that the internal 

structure of Door is not copied.  

For this very simple example both Door and SecurityDoor are not big classes, but in a real 

system objects can very complex; this means that their allocation consumes a lot of memory and 

if a system contains thousands or millions of objects that could be an issue. 

 

OPERATOR OVERLOADING 

 
  Operator overloading is an important concept in object oriented programming. It is a type of 

polymorphism in which a user defined meaning can be given to an operator in addition to the      

predefined meaning for the operator. 

   

   Operator overloading allow us to redefine the way operator works for user-defined types such 

as objects. It cannot be used for built-in types such as int, float, char etc., For example, '+' 

operator can be overloaded to perform addition of two objects of distance class. 

  

  Python provides some special function or magic function that is automatically invoked when it 

is associated with that particular operator. For example, when we use + operator on objects, the 

magic method __add__() is automatically invoked in which the meaning/operation for + operator 

is defined for user defined objects. 

 
METHOD OVERLOADING 

In Python you can define a method in such a way that there are multiple ways to call it. 

Depending on the function definition, it can be called with zero, one, two or more parameters. 

59



 

 

Coding: 

# distance is a class. Distance is measured in terms of feet and inches 

class distance:  

    def __init__(self, f,i):  

        self.feet=f  

        self.inches=i  

    # overloading of binary operator > to compare two distances 

    def __gt__(self,d): 

        if(self.feet>d.feet): 

           return(True) 

        elif((self.feet==d.feet) and (self.inches>d.inches)): 

            return(True) 

        else: 

            return(False) 

# overloading of binary operator + to add two distances 

    def __add__(self, d):  

        i=self.inches + d.inches 

        f=self.feet + d.feet 

        if(i>=12): 

            i=i-12 

            f=f+1 

        return distance(f,i)  

60



         # displaying the distance 

    def show(self):  

        print("Feet= ", self.feet, "Inches= ",self.inches)  

  a,b= (input("Enter feet and inches of distance1: ")).split() 

a,b =[int(a),int(b)] 

c,d= (input("Enter feet and inches of distance2: ")).split() 

c,d =[int(c),int(d)] 

d1 = distance(a,b)  

d2 = distance(c,d)  

if(d1>d2): 

    print("Distance1 is greater than Distance2") 

else: 

    print("Distance2 is greater or equal to Distance1") 

d3=d1+d2 

print("Sum of the two Distance is:") 

d3.show() 

Result: 

Enter feet and inches of distance1: 8 4 

8 4 

Enter feet and inches of distance2: 6 9 

6 9 

Distance1 is greater than Distance2 

Sum of the two Distance is: 

Feet=  15 Inches=  1 

>>>  
 

METHOD OVERRIDING IN PYTHON 
 
 

61



Overriding is the ability of a class to change the implementation of a method provided by one of 

its ancestors. Overriding is a very important part of OOP since it is the feature that makes 

inheritance exploit its full power. Through method overriding a class may "copy" another class, 

avoiding duplicated code, and at the same time enhance or customize part of it. Method 

overriding is thus a strict part of the inheritance mechanism. 

As for most OOP languages, in Python inheritance works through implicit delegation: when the 

object cannot satisfy a request, it first tries to forward the request to its ancestors, following the 

specific language rules in the case of multiple inheritance. 

An example: 

class Parent(object): 

    def __init__(self): 

        self.value = 5 

    def get_value(self): 

        return self.value 

 

class Child(Parent): 

    pass 

As you can see the Child class is empty, but since it inherits from Parent Python takes charge of 

routing all method calls. So you may use the get_value() method of Child objects and everything 

works as expected. 

>>> c = Child() 

>>> c.get_value() 

5 

 

PYTHON SPECIAL UNIT 

The unittest unit testing framework was originally inspired by JUnit and has a similar flavor as 

major unit testing frameworks in other languages. It supports test automation, sharing of setup 

and shutdown code for tests, aggregation of tests into collections, and independence of the tests 

from the reporting framework. 

To achieve this, unittest supports some important concepts in an object-oriented way: 

test fixture 

62

https://docs.python.org/3/library/unittest.html#module-unittest
https://docs.python.org/3/library/unittest.html#module-unittest


A test fixture represents the preparation needed to perform one or more tests, and any 

associated cleanup actions. This may involve, for example, creating temporary or proxy 

databases, directories, or starting a server process. 

test case 

A test case is the individual unit of testing. It checks for a specific response to a particular 

set of inputs. unittest provides a base class, TestCase, which may be used to create new 

test cases. 

test suite 

A test suite is a collection of test cases, test suites, or both. It is used to aggregate tests 

that should be executed together. 

test runner 

A test runner is a component which orchestrates the execution of tests and provides the 

outcome to the user. The runner may use a graphical interface, a textual interface, or 

return a special value to indicate the results of executing the tests. 

OBJECT REPRESENATION 

Destroying Objects (Garbage Collection) 

Python deletes unneeded objects (built-in types or class instances) automatically to free 

the memory space. The process by which Python periodically reclaims blocks of memory that 

no longer are in use is termed Garbage Collection. 

Python's garbage collector runs during program execution and is triggered when an 

object's reference count reaches zero. An object's reference count changes as the number of 

aliases that point to it changes. 

An object's reference count increases when it is assigned a new name or placed in a 

container (list, tuple, or dictionary). The object's reference count decreases when it's deleted 

with del, its reference is reassigned, or its reference goes out of scope. When an object's 

reference count reaches zero, Python collects it automatically. 

a = 40      # Create object <40> 

b = a       # Increase ref. count  of <40>  

c = [b]     # Increase ref. count  of <40>  

 

del a       # Decrease ref. count  of <40> 

b = 100     # Decrease ref. count  of <40>  

c[0] = -1   # Decrease ref. count  of <40>  

You normally will not notice when the garbage collector destroys an orphaned instance 

and reclaims its space. But a class can implement the special method __del__(), called a 

63

https://docs.python.org/3/library/unittest.html#module-unittest
https://docs.python.org/3/library/unittest.html#unittest.TestCase


destructor, that is invoked when the instance is about to be destroyed. This method might be 

used to clean up any non memory resources used by an instance. 

ATTRIBUTE BINDING 

Attributes of class objects 

You normally specify an attribute of a class object by binding a value to an identifier within the 

class body. For example: 

class C1(object): 

    x = 23 

print(C1.x)                               # prints: 23 

The class object C1 has an attribute named x, bound to the value 23, and C1.x refers to that 

attribute. 

You can also bind or unbind class attributes outside the class body. For example: 

class C2(object): pass 

C2.x = 23 

print(C2.x)                               # prints: 23 

Your program is usually more readable if you bind, and thus create, class attributes only with 

statements inside the class body. However, rebinding them elsewhere may be necessary if you 

want to carry state information at a class, rather than instance, level; Python lets you do that, if 

you wish. There is no difference between a class attribute created in the class body, and one 

created or rebound outside the body by assigning to an attribute. 

As we’ll discuss shortly, all instances of the class share all of the class’s attributes. 

The class statement implicitly sets some class attributes. Attribute __name__ is 

the classname identifier string used in the class statement. Attribute __bases__ is the tuple of 

class objects given as the base classes in the class statement. For example, using the class C1 we 

just created: 

print(C1.__name__, C1.__bases__) 

64



# prints: C1 (<type 'object'>,) 

A class also has an attribute __dict__, the mapping object that the class uses to hold other 

attributes (AKA its namespace); in classes, this mapping is read-only. 

In statements that are directly in a class’s body, references to attributes of the class must use a 

simple name, not a fully qualified name. For example: 

class C3(object): 

    x = 23 

    y = x + 22                         # must use just x, not C3.x 

However, in statements in methods defined in a class body, references to attributes of the class 

must use a fully qualified name, not a simple name. For example: 

class C4(object): 

    x = 23 

    def amethod(self): 

        print(C4.x)  # must use C4.x or self.x, not just x! 

Note that attribute references (i.e., an expression like C.s) have semantics richer than those of 

attribute bindings.  

Function definitions in a class body 

Most class bodies include def statements, since functions (known as methods in this context) are 

important attributes for most class objects. A def statement in a class body obeys the rules 

presented in “Functions”. In addition, a method defined in a class body has a mandatory first 

parameter, conventionally named self, that refers to the instance on which you call the method. 

The self parameter plays a special role in method calls, as covered in “Bound and Unbound 

Methods”. 

Here’s an example of a class that includes a method definition: 

class C5(object): 

65

https://www.oreilly.com/library/view/python-in-a/9781491913833/ch03.html#functions
https://www.oreilly.com/library/view/python-in-a/9781491913833/ch04.html#bound_and_unbound_methods
https://www.oreilly.com/library/view/python-in-a/9781491913833/ch04.html#bound_and_unbound_methods


    def hello(self): 

        print('Hello') 

MEMORY MANAGEMENT IN PYTHON 

Memory management in Python involves a private heap containing all Python objects and 

data structures. The management of this private heap is ensured internally by the Python 

memory manager. The Python memory manager has different components which deal with 

various dynamic storage management aspects, like sharing, segmentation, preallocation or 

caching. 

At the lowest level, a raw memory allocator ensures that there is enough room in the 

private heap for storing all Python-related data by interacting with the memory manager of the 

operating system. On top of the raw memory allocator, several object-specific allocators operate 

on the same heap and implement distinct memory management policies adapted to the 

peculiarities of every object type. For example, integer objects are managed differently within 

the heap than strings, tuples or dictionaries because integers imply different storage requirements 

and speed/space tradeoffs. The Python memory manager thus delegates some of the work to the 

object-specific allocators, but ensures that the latter operate within the bounds of the private 

heap. 

It is important to understand that the management of the Python heap is performed by the 

interpreter itself and that the user has no control over it, even if they regularly manipulate object 

pointers to memory blocks inside that heap. The allocation of heap space for Python objects and 

other internal buffers is performed on demand by the Python memory manager through the 

Python/C API functions. In addition, the following macro sets are provided for calling the 

Python memory allocator directly, without involving the C API functions listed above. However, 

note that their use does not preserve binary compatibility across Python versions and is therefore 

deprecated in extension modules. 

 PyMem_MALLOC(size) 

 PyMem_NEW(type, size) 

 PyMem_REALLOC(ptr, size) 

 PyMem_RESIZE(ptr, type, size) 

 PyMem_FREE(ptr) 

 PyMem_DEL(ptr) 

 

66



 

 

Special properties of classes 

Class objects support two kinds of operations: attribute references and instantiation. 

Attribute references use the standard syntax used for all attribute references in 

Python: obj.name. Valid attribute names are all the names that were in the class’s namespace 

when the class object was created. So, if the class definition looked like this: 

class MyClass: 

    """A simple example class""" 

    i = 12345 

 

    def f(self): 

        return 'hello world' 

then MyClass.i and MyClass.f are valid attribute references, returning an integer and a function 

object, respectively. Class attributes can also be assigned to, so you can change the value 

of MyClass.i by assignment. __doc__ is also a valid attribute, returning the docstring belonging 

to the class: "A simple example class". 

Class instantiation uses function notation. Just pretend that the class object is a parameterless 

function that returns a new instance of the class. For example (assuming the above class): 

x = MyClass() 

creates a new instance of the class and assigns this object to the local variable x. 

67



The instantiation operation (“calling” a class object) creates an empty object. Many classes like 

to create objects with instances customized to a specific initial state. Therefore a class may 

define a special method named __init__(), like this: 

def __init__(self): 

    self.data = [] 

When a class defines an __init__() method, class instantiation automatically 

invokes __init__() for the newly-created class instance. So in this example, a new, initialized 

instance can be obtained by: 

x = MyClass() 

Of course, the __init__() method may have arguments for greater flexibility. In that case, 

arguments given to the class instantiation operator are passed on to __init__(). For example, 

>>> 

>>> class Complex: 

...     def __init__(self, realpart, imagpart): 

...         self.r = realpart 

...         self.i = imagpart 

... 

>>> x = Complex(3.0, -4.5) 

>>> x.r, x.i 

(3.0, -4.5) 

 

 

SLOTS AND PRIVATE ATTRIBUTES 

Slots 

slots provide a special mechanism to reduce the size of objects.  It is a concept 

of memory optimisation on objects.  

Avoiding Dynamically Created Attributes 

The attributes of objects are stored in a dictionary "__dict__". Like any other dictionary, a 

dictionary used for attribute storage doesn't have a fixed number of elements. In other 

words, you can add elements to dictionaries after they have been defined, as we have seen 

in our chapter on dictionaries. This is the reason, why you can dynamically add attributes to 

objects of classes that we have created so far: 

>>> class A(object): 

...     pass 

68

https://docs.python.org/3/reference/datamodel.html#object.__init__
https://docs.python.org/3/reference/datamodel.html#object.__init__
https://docs.python.org/3/reference/datamodel.html#object.__init__
https://docs.python.org/3/reference/datamodel.html#object.__init__
https://docs.python.org/3/reference/datamodel.html#object.__init__


...  

>>> a = A() 

>>> a.x = 66 

>>> a.y = "dynamically created attribute" 

The dictionary containing the attributes of "a" can be accessed like this: 

>>> a.__dict__ 

{'y': 'dynamically created attribute', 'x': 66} 

You might have wondered that you can dynamically add attributes to the classes, we have 

defined so far, but that you can't do this with built-in classes like 'int', or 'list': 

>>> x = 42 

>>> x.a = "not possible to do it" 

Traceback (most recent call last): 

  File "<stdin>", line 1, in <module> 

AttributeError: 'int' object has no attribute 'a' 

>>>  

>>> lst = [34, 999, 1001] 

>>> lst.a = "forget it" 

Traceback (most recent call last): 

  File "<stdin>", line 1, in <module> 

AttributeError: 'list' object has no attribute 'a' 

 

69



18CSPC405 – PYTHON PROGRAMMING 

Unit IV - FILES AND EXCEPTION HANDLING 

A file is a collection of data stored in one unit, identified by a filename.  It can be a text 

document, picture/image, audio, audio-video or other collection of data. The common 

format/extensions for text documents are .doc, .docx (Microsoft word documents), odt (Libre 

Office open document text), .pdf (Adobe portable document format) , rtf (Microsoft rich text 

format), .tex (LaTeX text), .txt (Microsoft Notepad text). The image file formats are: .jpg, .tiff, 

.gif, .png, bmp. The commonly used audio formats are: .wav and .mp3. The audio-video format 

includes .avi, .mp4, .mkv, .mov, .flv, .wmv etc., 

Python supports file handling and allow users to handle files i.e., to read and write files, 

along with many other file handling options, to operate on files.  Python file functions open() and  

close() are used  for  opening and closing a file. The read() and write() functions are used for 

reading and writing text (or numeric or binary data) from/to the file, respectively. File opening 

modes in Python are: r (read), w (write), a (append), rb (reading binary data), wb(writing binary 

data). 

OUTPUT USING THE PRINT() FUNCTION 
To output your data to the screen, use the print () function. You can write print 

(argument) and this will print the argument in the next line when you press the ENTER key. 

Definitions to remember: An argument is a value you pass to a function when calling it. 

A value is a letter or a number. A variable is a name that refers to a value. It begins with a letter. 

An assignment statement creates new variables and gives them values. 

This syntax is valid in both Python 3.x and Python 2.x. For example, if your data is 

"Guido," you can put "Guido" inside the parentheses ( ) after print. 

>>>print("Guido") 

Guido 

 

Sample Program 

a) Coding: (Reading and Writing Text File) 

# File copy – content of a text file (input.txt) is copied to another text file (output.txt) 

infile=open("/media/yughu/D/input.txt","r") 

outfile=open("/media/yughu/D/output.txt","w") 

lines = chars = 0 

for line in infile: 

    lines += 1 

70



    chars += len(line) 

    outfile.write(line) 

print(lines, "lines copied,",chars, "characters copied") 

infile.close() 

outfile.close() 

Result: 

11 lines copied, 82 characters copied 

b) Coding: (Reding and Writing Numeric Data File) 

# sum of  all the numbers in the input file (input.dat)  is computed and 

# it is written to the output file (output.dat) 

 

infile=open("/media/yughu/D/input.dat","r") 

outfile=open("/media/yughu/D/output.dat","w") 

sum=0 

s = infile.read() 

numbers = [int(x) for x in s.split()] 

print("The numbers are:") 

print(numbers) 

for num in numbers: 

   sum=sum+num 

sum=str(sum) 

outfile.write("Sum is ") 

outfile.write(sum) 

infile.close()  

outfile.close() 

 

Result: 

The numbers are: 

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 

FILE DIALOGUES 

Creating Menus 

When you enter the menu bar editor, it displays a new untitled menu. 

How to Create A New Menu 

Choose File New (or the New button on the toolbar). 

The menu bar editor displays a new menu with an end-of-menu marker (>). 

71



In the Label property, enter the text of the first menu label and select which type of menu 

item it is. 

How to Insert New Menu Items 

Select the item that is to be under the new item. To place an item at the bottom of the 

menu, select the end-of-menu marker. 

Choose Edit Insert. The editor places the new item above the previous selection with the 

label UNTITLED. 

EXCEPTION HANDLING 

Exceptions are run-time anomalies or abnormal conditions that a program 

encounters during its execution such as division by zero (ZeroDivisionError), opening a file 

for reading that does not exist (IOError), indentation is not specified properly 

(IndentationError) etc., In general, an exception breaks the normal flow of execution. 

Exception handling enables a program to deal with exceptions and continue its normal execution. 

A try statement in Python can have more than one except clause to handle different 

exceptions. The statement can also have an optional else and/or finally statement. The try-except 

syntax is: 

  try: 

   <body> 

   except <ExceptionType1>: 

  <handler1> 

                  ... 

                             ... 

 except <ExceptionTypeN>: 

   <handlerN> 

  except: 

   <handlerExcept> 

  else: 

   <process_else> 

  finally: 

   <process_finally> 

 

   The multiple excepts are similar to elifs in python. When an exception occurs, it is checked to 

match an exception in an except clause after the try clause one by one (sequentially). If a match 

is found, the handler for the matching case is executed and the rest of the except clauses are 

skipped. Note that the <ExceptionType> in the last except  clause may be omitted. If the 

exception does not match any of the exception types before the last except clause, the 

<handlerExcept> for the last except clause is executed. 

72



    A try statement may have an optional else clause, which is executed if no exception is raised 

in the try body. A try statement may have an optional finally clause, which is intended to define 

cleanup actions that must be performed under all circumstances.  

Sample Coding: 

# Hadling exceptions that occurs at runtime such as division by zero, syntax error and 

# raising and handling the exception. 

try: 

    number1, number2 = eval(input("Enter two numbers separated by a comma: ")) 

    result = number1 / number2 

    print("Result is", result) 

    if(number1==0): 

       raise RuntimeError() 

except ZeroDivisionError: 

    print("Division by Zero") 

except SyntaxError: 

    print("A comma may be Missing in the Input") 

except RuntimeError: 

    print("May be Meaningless") 

except: 

    print("Something Wrong in the Input") 

else: 

    print("No Exceptions") 

finally: 

    print("Finally Clause is Executed") 

  

Result:                             

Enter two numbers separated by a comma: 4,0 

4,0 

Division by Zero 

Finally Clause is Executed 

>>>  

Enter two numbers separated by a comma: 5 6 

5 6 

A comma may be Missing in the Input 

Finally Clause is Executed 

>>>  

Enter two numbers separated by a comma: 0,9 

0,9 

Result is 0.0 

May be Meaningless 

Finally Clause is Executed 

73



>>>  

Enter two numbers separated by a comma: 6 

6 

Something Wrong in the Input 

Finally Clause is Executed 

>>>  

Enter two numbers separated by a comma: 12,4 

12,4 

Result is 3.0 

No Exceptions 

Finally Clause is Eexecuted 

 

TEXT INPUT AND OUTPUT 

 

Opening a file creates a file object.  

 

In this example, the variable f refers to the new file object. 

>>> f = open("test.dat","w") 

>>> print f 

<open file 'test.dat', mode 'w' at fe820> 

 

The open function takes two arguments. The first is the name of the file, and the second is the 

mode. Mode "w" means that we are opening the file for writing. 

 

If there is no file named test.dat, it will be created. If there already is one, it will be replaced by 

the file we are writing. 

 

When we print the file object, we see the name of the file, the mode, and the location of the 

object. 

 

To put data in the file we invoke the write method on the file object: 

>>> f.write("Now is the time") 

>>> f.write("to close the file") 

 

Closing the file tells the system that we are done writing and makes the file available for 

reading: 

>>> f.close() 

 

Now we can open the file again, this time for reading, and read the contents into a string. This 

time, the mode argument is "r" for reading: 

>>> f = open("test.dat","r") 

 

If we try to open a file that doesn't exist, we get an error: 

>>> f = open("test.cat","r") 

 

 

74



 

EXCEPTION HANDLING – PROGRAM ERRORS AND EXCEPTION HANDLING 

 

• Types of program errors 

• Syntax, semantic, and logical errors 

• Compile time and runtime errors 

• Test drivers 

• Debugging techniques 

• Exception handling 

• The most common types of exceptions 

• The throws clause and the throw statement 

• Catching exceptions by means of the try-catch construct 

• Propagation of exceptions 

• Exceptions when reading from a file 

 

Types of program errors 

 

We distinguish between the following types of errors: 

 

Syntax errors: errors due to the fact that the syntax of the language is not respected. 

Semantic errors: errors due to an improper use of program statements. 

Logical errors: errors due to the fact that the specification is not respected. 

 

From the point of view of when errors are detected, we distinguish: 

 

Compile time errors: syntax errors and static semantic errors indicated by the compiler. 

Runtime errors: dynamic semantic errors, and logical errors, that cannot be detected by the 

compiler. 

Syntax errors: Syntax errors are due to the fact that the syntax of the Java language is not 

respected. 

Semantic errors: Semantic errors indicate an improper use of Java statements. 

Logical errors: Logical errors are caused by the fact that the software specification is not 

respected. The program is compiled and executed without errors, but does not generate the 

requested result. 

 

75



TYPES OF EXCEPTION CLASS 

 

 Base Exception 

o Exception 

 Arithmetic Error 

 Floating Point Error 

 Overflow Error 

 Zero Division Error 

 Assertion Error 

 

Base Exception 

The Base Exception class is, as the name suggests, the base class for all built-in exceptions in 

Python. Typically, this exception is never raised on its own, and should instead be inherited 

by other, lesser exception classes that can be raised. 

 

Exception 

Exception is the most commonly-inherited exception type (outside of the true base class of 

Base Exception). In addition, all exception classes that are considered errors are subclasses of 

the Exception class. In general, any custom exception class you create in your own code 

should inherit from Exception. 

 

Arithmetic Error 
The base class for the variety of arithmetic errors, such as when attempting to divide by 

zero, or when an arithmetic result would be too large for Python to accurately represent. 

 

Assertion Error  
This error is raised when a call to the [assert] statement fails. 

 

BINARY I/O USING PICKLE — PYTHON OBJECT SERIALIZATION 

 

The pickle module implements binary protocols for serializing and de-serializing a Python object 

structure. “Pickling” is the process whereby a Python object hierarchy is converted into a byte 

stream and “unpickling” is the inverse operation, whereby a byte stream (from a binary file or 

bytes-like object) is converted back into an object hierarchy. Pickling (and unpickling) is 

alternatively known as “serialization”, “marshalling,” 1 or “flattening”; however, to avoid 

confusion, the terms used here are “pickling” and “unpickling”. 

 

Module Interface 

To serialize an object hierarchy, you simply call the dumps() function. Similarly, to de-serialize a 

data stream, you call the loads () function. However, if you want more control over serialization 

and de-serialization, you can create a Pickler or an Unpickler object, respectively. 

76



 

The pickle module provides the following constants: 

 

pickle.HIGHEST_PROTOCOL 

An integer, the highest protocol version available. This value can be passed as a protocol value to 

functions dump() and dumps() as well as the Pickler constructor. 

 

pickle.DEFAULT_PROTOCOL 

An integer, the default protocol version used for pickling. May be less than 

HIGHEST_PROTOCOL. Currently the default protocol is 4, first introduced in Python 3.4 and 

incompatible with previous versions. 

 

The pickle module provides the following functions to make the pickling process more 

convenient: 

 

pickle.dump(obj, file, protocol=None, *, fix imports=True, buffer callback=None) 

Write the pickled representation of the object obj to the open file object file. This is equivalent to 

Pickler(file, protocol).dump(obj). 

 

 

READING AND WRITING TO A BINARY FILE 

 

The open() function opens a file in text format by default. To open a file in binary format, add 'b' 

to the mode parameter. Hence the "rb" mode opens the file in binary format for reading, while 

the "wb" mode opens the file in binary format for writing. Unlike text mode files, binary files are 

not human readable. When opened using any text editor, the data is unrecognizable. 

 

The following code stores a list of numbers in a binary file. The list is first converted in a byte 

array before writing. The built-in function byte array() returns a byte representation of the object. 

 

Example: Write to a Binary File 

f=open("binfile.bin", "wb") 

num=[5, 10, 15, 20, 25] 

arr=byte array(num) 

f.write(arr) 

f.close() 

To read the above binary file, the output of the read() method is casted to a list using the 

list() function. 

 

Example: Reading a Binary File 

f=open("binfile.bin","rb") 

num=list(f.read()) 

Print (num) 

f.close () 

 

77



CASE STUDIES: COUNTING A CHARACTER IN A FILE 

 

Write a Python program to count the number of each character of a text file. 

 

Inputs:  

abc.txt - 

German Unity Day: The Day of German Unity (German: Tag der DeutschenEinheit) is the 

national day of Germany, celebrated on 3 October as a public holiday. It commemorates the 

anniversary of German reunification in 1990, when the goal of a united Germany that originated 

in the middle of the 19th century, was fulfilled again. Therefore, the name addresses neither the 

re-union nor the union, but the unity of Germany. The Day of German Unity on 3 October has 

been the German national holiday since 1990, when the reunification was formally completed. 

 

Sample Solution: 

Python Code: 

 

import collections 

import pprint 

file_input =input('File Name: ') 

withopen(file_input,'r')as info: 

  count = collections.Counter(info.read().upper()) 

  value = pprint.pformat(count) 

print(value) 

Sample output: 

File Name:  abc.txt 

Counter({' ': 93, 

         'E': 64, 

         'N': 45, 

         'A': 42, 

         'T': 40, 

         'I': 36, 

         'O': 31, 

         'R': 29, 

         'H': 25, 

         'D': 19, 

         'M': 17, 

         'Y': 17, 

         'L': 15, 

         'F': 15, 

         'U': 14, 

         'C': 13, 

         'G': 13, 

78



         'S': 12, 

         ',': 7, 

         'B': 6, 

         'W': 5, 

         '9': 5, 

         '.': 4, 

         'P': 4, 

         '1': 3, 

         '\n': 2, 

         '0': 2, 

         '3': 2, 

         ':': 1, 

         '-': 1, 

         'K': 1, 

         '(': 1, 

         ')': 1, 

         'V': 1}) 

 

CLIENT SERVER ARCHITECTURE IN PYTHON 

1. socket.socket(): Create a new socket using the given address family, socket type and protocol 

number. 

2. socket.bind(address): Bind the socket to address. 

3. socket.listen(backlog): Listen for connections made to the socket. The backlog argument 

specifies the maximum number of queued connections and should be at least 0; the maximum 

value is system-dependent (usually 5), the minimum value is forced to 0. 

4. socket.accept(): The return value is a pair (conn, address) where conn is a new socket object 

usable to send and receive data on the connection, and address is the address bound to the socket 

on the other end of the connection. 

At accept(), a new socket is created that is distinct from the named socket. This new socket is 

used solely for communication with this particular client. 

For TCP servers, the socket object used to receive connections is not the same socket used to 

perform subsequent communication with the client. In particular, the accept() system call returns 

a new socket object that's actually used for the connection. This allows a server to manage 

connections from a large number of clients simultaneously. 

79



5. socket.send(bytes[, flags]): Send data to the socket. The socket must be connected to a remote 

socket. Returns the number of bytes sent. Applications are responsible for checking that all data 

has been sent; if only some of the data was transmitted, the application needs to attempt delivery 

of the remaining data. 

6. socket.colse(): Mark the socket closed. all future operations on the socket object will fail. The 

remote end will receive no more data (after queued data is flushed). Sockets are automatically 

closed when they are garbage-collected, but it is recommended to close() them explicitly. 

 

 

CLIENT SERVER SOCKET PROGRAMMING 

 

Procedure (Server): The server will host the network using the assigned host and port using 

which the client will connect to the server. The server will act as the sender and the user will 

have to input the filename of the file that he/she would like to transmit. The user must make sure 

that the file that needs to be sent is in the same directory as the "server.py" program. 

80



 

Procedure (Client): The client program will prompt the user to enter the host address of the 

server while the port will already be assigned to the port variable. Once the client program has 

connected to the server it will ask the user for a filename to be used for the file that will be 

received from the server. Lastly the client program will receive the file and leave it in the same 

directory under the same filename set as the user. 

 

Server Coding: 

import socket 

s = socket.socket() 

host = socket.gethostname() #Get localhost IP address 

port = 8080             #assign port for session 

s.bind((host,port))  #bind the socket to assigned host IP and port 

s.listen(1)                      #put the socket into listening mode for 1 client 

print(host) 

print("Waiting for any incoming connection... ") 

conn, addr = s.accept() 

print(addr, "Has connected to the server") 

filename = input(str("Enter the name of the file to be transmitted: ")) 

file = open(filename , 'rb') # Opens a file for reading only in binary format 

file_data = file.read(1024) 

conn.send(file_data) 

print("File has been transmitted successfully") 

 

Client Coding: 

 

import socket 

s = socket.socket() 

host = input(str("Please enter the host address of the sender: ")) 

port = 8080 

s.connect((host,port)) 

print("Connected ... ") 

filename = input(str("Please enter a filename for the incoming file: ")) 

file = open(filename, 'wb')   # Opens a file for writing only in binary format 

file_data = s.recv(1024) 

file.write(file_data) 

file.close() 

print("File has been received successfully.") 

 

 

81



 

TCP AND UDP IN TRANSPORT LAYER 

Layer 3 or the Network layer uses IP or Internet Protocol which being a connection less 

protocol treats every packet individually and separately leading to lack of reliability during a 

transmission. For example, when data is sent from one host to another, each packet may take a 

different path even if it belongs to the same session. This means the packets may/may not arrive 

in the right order. Therefore, IP relies on the higher layer protocols to provide reliability.  

TCP (Transmission Control Protocol): 

Transmission Control Protocol (TCP) – a connection-oriented communications protocol that 

facilitates the exchange of messages between computing devices in a network. It is the most 

common protocol in networks that use the Internet Protocol (IP); together they are sometimes 

referred to as TCP/IP. 

TCP takes messages from an application/server and divides them into packets, which can then be 

forwarded by the devices in the network – switches, routers, security gateways – to the 

destination. TCP numbers each packet and reassembles them prior to handing them off to the 

application/server recipient. Because it is connection-oriented, it ensures a connection is 

established and maintained until the exchange between the application/servers sending and 

receiving the message is complete. 

UDP (User Datagram Protocol): 

UDP is also a layer 4 protocol but unlike TCP it doesn’t provide acknowledgement of the 

sent packets. Therefore, it isn’t reliable and depends on the higher layer protocols for the same. 

But on the other hand it is simple, scalable and comes with lesser overhead as compared to TCP. 

It is used in video and voice streaming. 

82



 

TWISTED NETWORK FRAMEWORK 

Twisted is a framework for writing asynchronous, event-driven networked programs in 

Python -- both clients and servers. In addition to abstractions for low-level system calls like 

select and socket, it also includes a large number of utility functions and classes, which make 

writing new servers easy. Twisted includes support for popular network protocols like HTTP and 

SMTP, support for GUI frameworks like GTK+/GNOME and Tk and many other classes 

designed to make network programs easy. Whenever possible, Twisted uses Python's 

introspection facilities to save the client programmer as much work as possible. Even though 

Twisted is still work in progress, it is already usable for production systems -- it can be used to 

bring up a Web server, a mail server or an IRC server in a matter of minutes, and require almost 

no configuration. 

Python lends itself to writing frameworks. Python has a simple class model, which 

facilitates inheritance. It has dynamic typing, which means code needs to assume less. Python 

also has built-in memory management, which means application code does not need to track 

ownership. Thus, when writing a new application, a programmer often finds himself writing a 

framework to make writing this kind of application easier. Twisted evolved from the need to 

write high-performance interoperable servers in Python, and making them easy to use (and 

difficult to use incorrectly). 

83



There are three ways to write network programs: 

1. Handle each connection in a separate process 

2. Handle each connection in a separate thread 

3. Use non-blocking system calls to handle all connections in one thread. 

 

USENET 

Usenet is a worldwide distributed discussion system available on computers. It was 

developed from the general-purpose Unix-to-Unix Copy (UUCP) dial-up network architecture. 

Users read and post messages (called articles or posts, and collectively termed news) to one or 

more categories, known as newsgroups. Usenet resembles a bulletin board system (BBS) in 

many respects and is the precursor to Internet forums that are widely used today. Discussions are 

threaded, as with web forums and BBSs, though posts are stored on the server sequentially. The 

name comes from the term "users network" 

NEWSGROUP – E-MAIL 

comp.lang.python 

comp.lang.python is a high-volume Usenet open (not moderated) newsgroup for general 

discussions and questions about Python. You can also access it as a mailing list through python-

list. 

Pretty much anything Python-related is fair game for discussion, and the group is even fairly 

tolerant of off-topic digressions; there have been entertaining discussions of topics such as 

floating point, good software design, and other programming languages such as Lisp and Forth. 

Most discussion on comp.lang.python is about developing with Python, not about development 

of the Python interpreter itself. Some of the core developers still read the list, but most of them 

don't. Occasionally comp.lang.python suggestions have resulted in an enhancement proposal 

being written, leading to a new Python feature. If you find a bug in Python, don't send it to 

comp.lang.python; file a bug report in the issue tracker. 

SIMPLE MAIL TRANSFER PROTOCOL (SMTP) 

SMTP is a protocol, which handles sending e-mail and routing e-mail between mail servers. 

Python provides smtplib module, which defines an SMTP client session object that can be used 

to send mail to any Internet machine with an SMTP or ESMTP listener daemon.Here is a simple 

syntax to create one SMTP object, which can later be used to send an e-mail. 

import smtplib 

smtpObj = smtplib.SMTP( [host [, port [, local_hostname]]] ) 

 

84



Here is the detail of the parameters − 

host − This is the host running your SMTP server. You can specify IP address of the host or a 

domain name like tutorialspoint.com. This is optional argument. 

port − If you are providing host argument, then you need to specify a port, where SMTP server 

is listening. Usually this port would be 25. 

local_hostname − If your SMTP server is running on your local machine, then you can specify 

just localhost as of this option. 

An SMTP object has an instance method called sendmail, which is typically used to do the work 

of mailing a message. It takes three parameters − 

The sender − A string with the address of the sender. 

The receivers − A list of strings, one for each recipient. 

The message − A message as a string formatted as specified in the various RFCs 

POP3 

To receive email you can write a MUA(Mail User Agent) as the client, and retrieve the 

email from MDA (Mail Delivery Agent) to the user’s computer or mobile phone. The most 

commonly used protocol for receiving mail is POP protocol. The current version number is 3, 

commonly known as POP3. Python has a built-in poplib module, which implements POP3 

protocol and can be used to receive mail directly. 

The POP3 protocol does not receive the original readable message itself, but the encoded 

text of the message that SMTP sent. So in order to turn the text received by POP3 into a readable 

email, it is necessary to parse the original text with various classes provided by the email module 

and turn it into a readable email object. So there are two steps for you to receive email from a 

pop3 server in Python. 

The pop3 protocol is an email protocol to download messages from the email-server. 

These messages can be stored in the local machine. 

Key Points 

 POP is an application layer internet standard protocol. 

 Since POP supports offline access to the messages, thus requires less internet 

usage time. 

 POP does not allow search facility. 

 In order to access the messaged, it is necessary to download them. 

 It allows only one mailbox to be created on server. 

 It is not suitable for accessing non mail data. 

85



18CSPC405 – Python Programming 

Unit V –Database and GUI 

The dbm package in Python's built-in library provides a dictionary like an interface DBM 

style databases. The dbm library is a simple database engine, written by Ken Thompson. 

DBM stands for DataBase Manager, used by UNIX operating system, the library stores 

arbitrary data by use of a single key (a primary key) in fixed-size buckets and uses hashing 

techniques to enable fast retrieval of the data by key. 

There are following modules in dbm package: 

The dbm.ndbm module provides an interface to the Unix “(n)dbm” library. Dbm objects 

behave like dictionaries, with keys and values should be stored as bytes. The module doesn't 

support and the items() and values() methods. 

The dbm.dumb module provides a persistent dictionary-like interface which is written 

entirely in Python. Unlike other modules such as dbm.gnu no external library is required. As 

with other persistent mappings, the keys and values are always stored as bytes. 

These modules are internally used by Python's shelve module. As in the case of shelve 

database, user-specified database name carries '.dir' postfix. The dbm object's whichdb() 

function tells which implementation of dbm is available on current Python installation. 

>>> dbm.whichdb('mydbm.db') 

'dbm.dumb' 

>>> db = dbm.open('mydbm.db','n') 

>>> db['name'] = Rajani Deshmukh' 

>>> db['address'] = 'Shivajinagar Pune' 

>>> db['PIN'] = '431001' 

>>> db.close() 

The open() function allows mode these flags − 

Value Meaning 

'r' Open an existing database for reading only (default) 

'w' Open an existing database for reading and writing 

'c' Open database for reading and writing, creating it if it doesn’t exist 

'n' Always create a new, empty database, open for reading and writing 

A dbm object is a dictionary like an object, just as a shelf object. Hence all dictionary 

operations can be performed. The dbm object can invoke get(),pop(), append(0 and update() 

86



methods. Following code opens 'mydbm.db' with 'r' flag and iterates over the collection of 

key-value pairs. 

>>> db = dbm.open('mydbm.db','r') 

>>> for k,v in db.items(): 

print (k,v) 

Output: 

b'name' : Rajani Deshmukh' 

b'address' : b'Shivajinagar Pune' 

b'PIN' : b'431001' 

dbm objects also provide the following methods − 

sync(): Synchronize the on-disk directory and data files. This method is called by the 

Shelve.sync() method. 

close(): Close the dbm database. 

gnu dbm objects have the following methods − 

firstkey() 

It’s possible to loop over every key in the database using this method and the nextkey() 

method. This method returns the starting key. 

gdbm.nextkey(key): Returns the key that follows key in the traversal. 

gdbm.reorganize(): this function will reorganize the database. gnu dbm objects will not 

shorten the length of a database file except by using this reorganization; otherwise, deleted 

file space will be kept and reused as new (key, value) pairs are added. 

 

SQL Database 

MySQLdb is an interface for connecting to a MySQL database server from Python. It 

implements the Python Database API v2.0 and is built on top of the MySQL C API. 

Database Connection 

Before connecting to a MySQL database, make sure of the followings − 

 You have created a database TESTDB. 

 You have created a table EMPLOYEE in TESTDB. 

 This table has fields FIRST_NAME, LAST_NAME, AGE, SEX and INCOME. 

 User ID "testuser" and password "test123" are set to access TESTDB. 

 Python module MySQLdb is installed properly on your machine. 

 You have gone through MySQL tutorial to understand MySQL Basics. 

87

https://www.tutorialspoint.com/mysql/index.htm


Example 

Following is the example of connecting with MySQL database "TESTDB" 

import MySQLdb 

# Open database connection 

db = MySQLdb.connect("localhost","testuser","test123","TESTDB" ) 

# prepare a cursor object using cursor() method 

cursor = db.cursor() 

# execute SQL query using execute() method. 

cursor.execute("SELECT VERSION()" 

# Fetch a single row using fetchone() method. 

data = cursor.fetchone() 

print ("Database version : %s " ,% data) 

# disconnect from server 

db.close() 

If a connection is established with the data source, then a Connection Object is returned and 

saved into db for further use, otherwise db is set to None. Next, db object is used to create a 

cursor object, which in turn is used to execute SQL queries. Finally, before coming out, it 

ensures that database connection is closed and resources are released. 

Creating Database Table 

Once a database connection is established, we are ready to create tables or records into the 

database tables using execute method of the created cursor. 

Example 

Let us create Database table EMPLOYEE − 

import MySQLdb 

# Open database connection 

db = MySQLdb.connect("localhost","testuser","test123","TESTDB" ) 

# prepare a cursor object using cursor() method 

88



cursor = db.cursor() 

# Drop table if it already exist using execute() method. 

cursor.execute("DROP TABLE IF EXISTS EMPLOYEE") 

# Create table as per requirement 

sql = """CREATE TABLE EMPLOYEE (FIRST_NAME  CHAR(20) NOT NULL, 

LAST_NAME  CHAR(20), AGE INT,  SEX CHAR(1), INCOME FLOAT )""" 

cursor.execute(sql) 

# disconnect from server 

db.close() 

 

INSERT Operation 

It is required when you want to create your records into a database table. 

Example 

The following example, executes SQL INSERT statement to create a record into EMPLOYEE 

table − 

import MySQLdb 

# Open database connection 

db = MySQLdb.connect("localhost","testuser","test123","TESTDB"  

# prepare a cursor object using cursor() method 

cursor = db.cursor() 

# Prepare SQL query to INSERT a record into the database. 

sql = """INSERT INTO EMPLOYEE(FIRST_NAME, LAST_NAME, AGE, SEX, 

INCOME) VALUES ('Mac', 'Mohan', 20, 'M', 2000)""" 

try: 

   # Execute the SQL command 

   cursor.execute(sql) 

89



   # Commit your changes in the database 

   db.commit() 

except: 

   # Rollback in case there is any error 

   db.rollback() 

# disconnect from server 

db.close() 

 

Above example can be written as follows to create SQL queries dynamically − 

import MySQLdb 

# Open database connection 

db = MySQLdb.connect("localhost","testuser","test123","TESTDB" ) 

# prepare a cursor object using cursor() method 

cursor = db.cursor() 

# Prepare SQL query to INSERT a record into the database. 

sql = "INSERT INTO EMPLOYEE(FIRST_NAME, LAST_NAME, AGE, SEX, INCOME) 

VALUES ('%s', '%s', '%d', '%c', '%d' )" % ('Mac', 'Mohan', 20, 'M', 2000) 

try: 

   # Execute the SQL command 

   cursor.execute(sql) 

   # Commit your changes in the database 

   db.commit() 

except: 

   # Rollback in case there is any error 

   db.rollback() 

# disconnect from server 

90



db.close() 

Example 

Following code segment is another form of execution where you can pass parameters directly 

− 

.................................. 

user_id = "test123" 

password = "password" 

con.execute('insert into Login values("%s", "%s")' % (user_id, password)) 

.................................. 

READ Operation 

READ Operation on any database means to fetch some useful information from the database. 

Once our database connection is established, you are ready to make a query into this 

database.  

You can use either fetchone() method to fetch single record or fetchall() method to fetech 

multiple values from a database table. 

 fetchone() − It fetches the next row of a query result set. A result set is an object that 

is returned when a cursor object is used to query a table. 

 fetchall() − It fetches all the rows in a result set. If some rows have already been 

extracted from the result set, then it retrieves the remaining rows from the result set. 

 rowcount − This is a read-only attribute and returns the number of rows that were 

affected by an execute() method. 

Example 

The following procedure queries all the records from EMPLOYEE table having salary more 

than 1000 − 

import MySQLdb 

# Open database connection 

db = MySQLdb.connect("localhost","testuser","test123","TESTDB" ) 

# prepare a cursor object using cursor() method 

cursor = db.cursor() 

sql = "SELECT * FROM EMPLOYEE WHERE INCOME > '%d'" % (1000) 

91



try: 

   # Execute the SQL command 

   cursor.execute(sql) 

   # Fetch all the rows in a list of lists. 

   results = cursor.fetchall() 

   for row in results: 

      fname = row[0] 

      lname = row[1] 

      age = row[2] 

      sex = row[3] 

      income = row[4] 

      # Now print fetched result 

      print "fname=%s,lname=%s,age=%d,sex=%s,income=%d" % (fname, lname, age, sex, 

income ) 

except: 

   print "Error: unable to fecth data" 

# disconnect from server 

db.close() 

This will produce the following result − 

fname=Mac, lname=Mohan, age=20, sex=M, income=2000 

Update Operation 

UPDATE Operation on any database means to update one or more records, which are already 

available in the database. 

The following procedure updates all the records having SEX as 'M'. Here, we increase AGE 

of all the males by one year. 

Example 

import MySQLdb 

92



# Open database connection 

db = MySQLdb.connect("localhost","testuser","test123","TESTDB" ) 

# prepare a cursor object using cursor() method 

cursor = db.cursor() 

# Prepare SQL query to UPDATE required records 

sql = "UPDATE EMPLOYEE SET AGE = AGE + 1 WHERE SEX = '%c'" % ('M') 

try: 

   # Execute the SQL command 

   cursor.execute(sql) 

   # Commit your changes in the database 

   db.commit() 

except: 

   # Rollback in case there is any error 

   db.rollback() 

# disconnect from server 

db.close() 

DELETE Operation 

DELETE operation is required when you want to delete some records from your database. 

Following is the procedure to delete all the records from EMPLOYEE where AGE is more 

than 20 − 

Example 

import MySQLdb 

# Open database connection 

db = MySQLdb.connect("localhost","testuser","test123","TESTDB" ) 

# prepare a cursor object using cursor() method 

cursor = db.cursor() 

93



# Prepare SQL query to DELETE required records 

sql = "DELETE FROM EMPLOYEE WHERE AGE > '%d'" % (20) 

try: 

   # Execute the SQL command 

   cursor.execute(sql) 

   # Commit your changes in the database 

   db.commit() 

except: 

   # Rollback in case there is any error 

   db.rollback() 

# disconnect from server 

db.close() 

Performing Transactions 

Transactions are a mechanism that ensures data consistency. Transactions have the following 

four properties − 

 Atomicity − Either a transaction completes or nothing happens at all. 

 Consistency − A transaction must start in a consistent state and leave the system in a 

consistent state. 

 Isolation − Intermediate results of a transaction are not visible outside the current 

transaction. 

 Durability − Once a transaction was committed, the effects are persistent, even after 

a system failure. 

The Python DB API 2.0 provides two methods to either commit or rollback a transaction. 

Example 

You already know how to implement transactions. Here is again similar example − 

# Prepare SQL query to DELETE required records 

sql = "DELETE FROM EMPLOYEE WHERE AGE > '%d'" % (20) 

try: 

   # Execute the SQL command 

94



   cursor.execute(sql) 

   # Commit your changes in the database 

   db.commit() 

except: 

   # Rollback in case there is any error 

   db.rollback() 

COMMIT Operation 

Commit is the operation, which gives a green signal to database to finalize the changes, and 

after this operation, no change can be reverted back. 

Here is a simple example to call commit method. 

db.commit() 

ROLLBACK Operation 

If you are not satisfied with one or more of the changes and you want to revert back those 

changes completely, then use rollback() method. 

Here is a simple example to call rollback() method. 

db.rollback() 

Disconnecting Database 

To disconnect Database connection, use close() method. 

db.close() 

If the connection to a database is closed by the user with the close() method, any outstanding 

transactions are rolled back by the DB. However, instead of depending on any of DB lower 

level implementation details, your application would be better off calling commit or rollback 

explicitly. 

Handling Errors 

There are many sources of errors. A few examples are a syntax error in an executed SQL 

statement, a connection failure, or calling the fetch method for an already canceled or 

finished statement handle. 

The DB API defines a number of errors that must exist in each database module. The 

following table lists these exceptions. 

95



Sr.No. Exception & Description 

1 
Warning 

Used for non-fatal issues. Must subclass StandardError. 

2 
Error 

Base class for errors. Must subclass StandardError. 

3 
InterfaceError 

Used for errors in the database module, not the database itself. Must subclass Error. 

4 
DatabaseError 

Used for errors in the database. Must subclass Error. 

5 
DataError 

Subclass of DatabaseError that refers to errors in the data. 

6 

OperationalError 

Subclass of DatabaseError that refers to errors such as the loss of a connection to 

the database. These errors are generally outside of the control of the Python 

scripter. 

7 

IntegrityError 

Subclass of DatabaseError for situations that would damage the relational integrity, 

such as uniqueness constraints or foreign keys. 

8 

InternalError 

Subclass of DatabaseError that refers to errors internal to the database module, such 

as a cursor no longer being active. 

9 

ProgrammingError 

Subclass of DatabaseError that refers to errors such as a bad table name and other 

things that can safely be blamed on you. 

10 
NotSupportedError 

Subclass of DatabaseError that refers to trying to call unsupported functionality. 

Python - GUI Programming (Tkinter) 

Python provides various options for developing graphical user interfaces (GUIs). Most 

important are listed below. 

 Tkinter 

 wxPython 

 JPython 

96



Out of all the GUI methods, Tkinter is the most commonly used method. 

Tkinter Programming 

Tkinter is the standard GUI library for Python. Python when combined with Tkinter provides 

a fast and easy way to create GUI applications. Tkinter provides a powerful object-oriented 

interface to the Tk GUI toolkit. 

Creating a GUI application using Tkinter is an easy task. A GUI application is created using 

Tkinter as follows: 

1. Import the Tkinter module using import Tkinter. 

2. Create the GUI application main window using window =Tk( ). 

3. Add one or more widgets to the GUI application. 

4. Enter the main event loop to take action against each event triggered by the user. 

Tkinter provides various controls, such as buttons, labels and text boxes used in a GUI 

application. These controls are commonly called widgets. There are currently 15 types of 

widgets in Tkinter. 

Example      Output: 
import Tkinter 

window = Tkinter.Tk() 

window.title('Hello Python')  

window.geometry("300x200+10+20") 

window. mainloop() 

1. import the TKinter module.  

2. After importing, setup the application object by calling the Tk() function. This will 

create a top-level window (root) having a frame with a title bar, control box with the 

minimize and close buttons. 

3. The geometry() method defines the width, height and coordinates of the top left 

corner of the frame as below:                  

window.geometry("widthxheight+XPOS+YPOS")  

Geometry Management 

All Tkinter widgets have access to specific geometry management methods, which have the purpose 

of organizing widgets throughout the parent widget area. Tkinter exposes the following geometry 

manager classes: pack, grid, and place. 

The pack() Method − This geometry manager organizes widgets in blocks before placing them in the 

parent widget. 

The grid() Method − This geometry manager organizes widgets in a table-like structure in the parent 

widget. 

97

https://www.tutorialspoint.com/python/tk_pack.htm
https://www.tutorialspoint.com/python/tk_grid.htm


The place() Method − This geometry manager organizes widgets by placing them in a specific 

position in the parent widget. 

Tkinter Widgets 

Tkinter provides various controls, such as buttons, labels and text boxes used in a GUI 

application. These controls are commonly called widgets. There are currently 15 types of 

widgets in Tkinter.  

S. No.  Widget Description about Widget 

1. 
Button 

The Button widget is used to display buttons in your 

application 

2. 
Canvas 

The Canvas widget is used to draw shapes, such as lines, ovals, 

polygons and rectangles, in your application. 

3. 

Checkbutton 

The Check button widget is used to display a number of 

options as checkboxes. The user can select multiple options at 

a time. 

4. 
Label 

The Label widget is used to provide a single-line caption for 

other widgets. It can also contain images. 

5. 
Listbox 

The List box widget is used to provide a list of options to a 

user. 

6. 
Menubutton 

The Menu button widget is used to display menus in your 

application. 

7. 

Radiobutton 

The Radio button widget is used to display a number of 

options as radio buttons. The user can select only one option at 

a time. 

8. 
Scrollbar 

The Scrollbar widget is used to add scrolling capability to 

various widgets, such as list boxes. 

9. 
Message 

The Message widget is used to display multiline text fields for 

accepting values from a user. 

10. Text The Text widget is used to display text in multiple lines. 

11. 
tkMessageBox 

This module is used to display message boxes in your 

applications. 

Button Widget 

The button can be created using the Button class. The Button class constructor requires a 

reference to the main window and to the options.  

Syntax: 

            Button(window, attributes) 

Optional Attributes:  

 text : caption of the button  

 bg : background colour  

 fg : foreground colour  

 font : font name and size  

 image : to be displayed instead of text  

 command : function to be called when clicked  

 

Example: 

 

98

https://www.tutorialspoint.com/python/tk_place.htm
https://www.tutorialspoint.com/python/tk_button.htm
https://www.tutorialspoint.com/python/tk_canvas.htm
https://www.tutorialspoint.com/python/tk_checkbutton.htm
https://www.tutorialspoint.com/python/tk_label.htm
https://www.tutorialspoint.com/python/tk_listbox.htm
https://www.tutorialspoint.com/python/tk_menubutton.htm
https://www.tutorialspoint.com/python/tk_radiobutton.htm
https://www.tutorialspoint.com/python/tk_scrollbar.htm
https://www.tutorialspoint.com/python/tk_message.htm
https://www.tutorialspoint.com/python/tk_text.htm
https://www.tutorialspoint.com/python/tk_messagebox.htm


 

from tkinter import *  

window=Tk() 

btn=Button(window, text="Click Button", fg='blue') 

btn.place(x=80, y=100) 

window.title('Hello Python') 

window.geometry("300x200+10+10") 

window.mainloop() 

 

Output: 

 

 

 

 

 

 

 

 

 

 

 

 

Label 

A label can be created using the Label class. Option parameters are similar to the Button 

object.  

 

Syntax: 

          Label(window, attributes) 

 

Example: 

from tkinter import * 

window=Tk() 

lbl=Label(window, text="Name", fg='red', font=("Helvetica", 16))  

lbl.place(x=60, y=50) 

window.title('Hello Python') 

window.geometry("300x200+10+10") 

window.mainloop() 

 

 

 

 

 

Output: 

 

 

 

 

 

 

 

99



 

 

 

Entry 

Entry widget used to accepting the user input in single-line text box. For multi-line text input 

use the Text widget.  

 bd : border size of the text box; default is 2 pixels.  

 show : to convert the text box into a password field, set show property to "*".  

Syntax: 

txtfld=Entry(window, text="This is Entry Widget", bg='black',fg='white', bd=5)  

 

Selection Widgets 

Radio button:  

The Radio button widget is used to display a number of options as radio buttons. The user 

can select only one option at a time. 

Check button: 

 The Check button widget is used to display a number of options as checkboxes. The user 

can select multiple options at a time. 

 

Combo box:  
This class is defined in the ttk module of tkinter package. It populates drop down data from a 

collection data type, such as a tuple or a list as values parameter.  

List box:  

Unlike Combobox, this widget displays the entire collection of string items. The user can 

select one or multiple items.  

 

Canvas: 
You can use the methods create_rectangle, create_oval, create_arc, 

create_polygon, or create_line to draw a rectangle, oval, arc, polygon, or line on a 

canvas. 

Event Handling 

In Tkinter, there are two ways to register an event with a widget.  

First way is by using the bind() method and the second way is by using the command 

parameter in the widget constructor.  

Bind() Method 

The bind() method associates an event to a call back function so that, when the even occurs, 

the function is called.  

Syntax:  

           Widget.bind(event, callback) 

For example, to invoke the MyButtonClicked() function on left button click, use the 

following code:  

 

 

Example: Even Binding 

 

from tkinter import * 

window=Tk() 

btn = Button(window, text='OK') 

btn.bind('<Button-1>', MyButtonClicked) 

 

100



 
Command Parameter 

Constructor methods of many widget classes have an optional parameter called command. 

This command parameter is set to callback the function which will be invoked whenever its 

bound event occurs. This method is more convenient than the bind() method.  

 

btn = Button(window, text='OK', command=myEventHandlerFunction)  

 
Example: 

from Tkinter import * 

class MyWindow: 

    def __init__(self, win): 

        self.lbl1=Label(win, text='First number') 

        self.lbl2=Label(win, text='Second number') 

        self.lbl3=Label(win, text='Result') 

        self.t1=Entry(bd=3) 

        self.t2=Entry() 

        self.t3=Entry() 

        self.btn1 = Button(win, text='Add') 

        self.btn2=Button(win, text='Subtract') 

        self.lbl1.place(x=100, y=50) 

        self.t1.place(x=200, y=50) 

        self.lbl2.place(x=100, y=100) 

        self.t2.place(x=200, y=100) 

        self.b1=Button(win, text='Add', command=self.add) 

        self.b2=Button(win, text='Subtract') 

        self.b2.bind('<Button-1>', self.sub) 

        self.b1.place(x=100, y=150) 

        self.b2.place(x=200, y=150) 

        self.lbl3.place(x=100, y=200) 

        self.t3.place(x=200, y=200) 

    def add(self): 

        self.t3.delete(0, 'end') 

        num1=int(self.t1.get()) 

        num2=int(self.t2.get()) 

        result=num1+num2 

        self.t3.insert(END, str(result)) 

    def sub(self, event): 

        self.t3.delete(0, 'end') 

        num1=int(self.t1.get()) 

        num2=int(self.t2.get()) 

        result=num1-num2 

        self.t3.insert(END, str(result)) 

 

window=Tk() 

mywin=MyWindow(window) 

window.title('Hello Python') 

window.geometry("400x300+10+10") 

window.mainloop() 

 

101



Output: 

 
 

 

Displaying Images 
You can add an image to a label, button, check button, or radio button. 

To create an image, use the PhotoImage class as follows: 

photo = PhotoImage(file = imagefilename) 

The image file must be in GIF format. You can use a conversion utility to convert image 

files in other formats into GIF format. 

Listing 9.12 shows you how to add images to labels, buttons, check buttons, and radio 

buttons. 

You can also use the create_image method to display an image in a canvas, as shown in 

Figure 9.13. 

 

from tkinter import * # Import all definitions from tkinter 

class ImageDemo: 

     def _ _init_ _(self): 

          window = Tk() # Create a window 

          window.title("Image Demo") # Set title 

          chinaImage = PhotoImage(file = "image/china.gif") 

          leftImage = PhotoImage(file = "image/left.gif") 

          rightImage = PhotoImage(file = "image/right.gif") 

          usImage = PhotoImage(file = "image/usIcon.gif") 

          ukImage = PhotoImage(file = "image/ukIcon.gif" 

          crossImage = PhotoImage(file = "image/x.gif") 

          circleImage = PhotoImage(file = "image/o.gif") 

          frame1 = Frame(window) 

          frame1.pack() 

          Label(frame1, ).pack(side = LEFT) 

          canvas = Canvas(frame1) 

          canvas.create_image(90, 50, image = chinaImage) 

 

          canvas["width"] = 200 

          canvas["height"] = 100 

 

102



         canvas.pack(side = LEFT) 

         frame2 = Frame(window) 

         frame2.pack() 

         Button(frame2, image = leftImage).pack(side = LEFT) 

         Button(frame2, image = rightImage).pack(side = LEFT) 

         Checkbutton(frame2, image = ukImage).pack(side = LEFT) 

        Checkbutton(frame2, image = usImage).pack(side = LEFT) 

         Radiobutton(frame2, image = circleImage).pack(side = LEFT) 

         Radiobutton(frame2, image = crossImage).pack(side = LEFT) 

 

     window.mainloop() # Create an event loop 

ImageDemo() # Create GUI 

 

Output: 

 
The program places image files in the image folder in the current program directory, then 

creates PhotoImage objects for several images in lines 9–16. These objects are used in 

widgets. 

The image is a property in Label, Button, Checkbutton, and RadioButton.  

Image is not a property for Canvas, but you can use the create_image method to display an 

image on the canvas (line 23). In fact, you can display multiple images in one canvas. 

Menus 

Tkinter provides a comprehensive solution for building graphical user interfaces. This 

section introduces menus, popup menus, and toolbars. 

Menus make selection easier and are widely used in windows. You can use the Menu class 

to create a menu bar and a menu, and use the add_command method to add items to the 

menu. 

from tkinter import * 

class MenuDemo: 

        def _ _init_ _(self): 

        window = Tk() 

        window.title("Menu Demo") 

        menubar = Menu(window) 

        window.config(menu = menubar) 

        operationMenu = Menu(menubar, tearoff = 0) 

        menubar.add_cascade(label = "Operation", menu = operationMenu) 

        operationMenu.add_command(label = "Add", command = self.add) 

        operationMenu.add_command(label = "Subtract", command = self.subtract) 

        operationMenu.add_separator() 

        operationMenu.add_command(label = "Multiply", command = self.multiply) 

        operationMenu.add_command(label = "Divide", command = self.divide) 

 

103



        exitmenu = Menu(menubar, tearoff = 0) 

        menubar.add_cascade(label = "Exit", menu = exitmenu) 

        exitmenu.add_command(label = "Quit", command = window.quit) 

        frame0 = Frame(window) # Create and add a frame to window 

        plusImage = PhotoImage(file = "image/plus.gif") create an image 

        minusImage = PhotoImage(file = "image/minus.gif") 

        timesImage = PhotoImage(file = "image/times.gif") 

        divideImage = PhotoImage(file = "image/divide.gif") 

        Button(frame0, image = plusImage, command = self.add).grid(row = 1, column     = 1, 

sticky = W) 

        Button(frame0, image = minusImage, command = self.subtract).grid(row = 1, column = 

2) 

        Button(frame0, image = timesImage, command = self.multiply).grid(row = 1, column = 

3) 

        Button(frame0, image = divideImage, command = self.divide).grid(row = 1, column = 

4) 

         frame1 = Frame(window) 

         frame1.grid(row = 2, column = 1, pady = 10)  

         Label(frame1, text = "Number 1:").pack(side = LEFT) 

         self.v1 = StringVar() 

         Entry(frame1, width = 5, textvariable = self.v1, justify = RIGHT).pack(side = LEFT) 

         Label(frame1, text = "Number 2:").pack(side = LEFT) 

        self.v2 = StringVar() 

        Entry(frame1, width = 5, textvariable = self.v2, justify = RIGHT).pack(side = LEFT) 

        Label(frame1, text = "Result:").pack(side = LEFT) 

        self.v3 = StringVar() 

        Entry(frame1, width = 5, textvariable = self.v3, justify = RIGHT).pack(side = LEFT) 

        frame2 = Frame(window) # Create and add a frame to window 

        frame2.grid(row = 3, column = 1, pady = 10, sticky = E) 

        Button(frame2, text = "Add", command = self.add).pack(side=LEFT) 

        Button(frame2, text = "Subtract", command = self.subtract).pack(side = LEFT) 

        Button(frame2, text = "Multiply", command = self.multiply).pack(side = LEFT) 

        Button(frame2, text = "Divide", command = self.divide).pack(side = LEFT) 

mainloop() 

def add(self): 

       self.v3.set(eval(self.v1.get()) + eval(self.v2.get())) 

def subtract(self): 

        self.v3.set(eval(self.v1.get()) - eval(self.v2.get())) 

def  multiply(self): 

        self.v3.set(eval(self.v1.get()) * eval(self.v2.get())) 

def divide(self): 

        self.v3.set(eval(self.v1.get()) / eval(self.v2.get())) 

MenuDemo() 

 

104



 

Popup Menus 

A popup menu, also known as a context menu, is like a regular menu, but it does not have a menu bar 

and it can float anywhere on the screen. 

Creating a popup menu is similar to creating a regular menu. First, you create an instance of 

Menu, and then you can add items to it. Finally, you bind a widget with an event to pop up the menu. 

from tkinter import * # Import all definitions from tkinter 

 class PopupMenuDemo: 

 def _ _init_ _(self): 

           window = Tk() # Create a window 

           window.title("Popup Menu Demo") # Set title 

           self.menu = Menu(window, tearoff = 0) 

           self.menu.add_command(label = "Draw a line", 

          command = self.displayLine) 

          self.menu.add_command(label = "Draw an oval", 

          command = self.displayOval) 

         self.menu.add_command(label = "Draw a rectangle", 

         command = self.displayRect) 

         self.menu.add_command(label = "Clear", 

         command = self.clearCanvas) 

         self.canvas = Canvas(window, width = 200, height = 100, bg = "white") 

         self.canvas.pack() 

         self.canvas.bind("<Button-3>", self.popup) 

         window.mainloop() # Create an event loop 

105



def displayRect(self): 

          self.canvas.create_rectangle(10, 10, 190, 90, tags = "rect") 

def displayOval(self): 

         self.canvas.create_oval(10, 10, 190, 90, tags = "oval") 

def displayLine(self): 

         self.canvas.create_line(10, 10, 190, 90, tags = "line") 

         self.canvas.create_line(10, 90, 190, 10, tags = "line") 

def clearCanvas(self): 

        self.canvas.delete("rect", "oval", "line") 

def popup(self, event): 

        self.menu.post(event.x_root, event.y_root) 

PopupMenuDemo() # Create GUI 

 

 

A canvas is created to display the shapes. The menu items use callback functions to instruct the 

canvas to draw shapes. 

Mouse, Key Events, and Bindings 

You can use the bind method to bind mouse and key events to a widget. 

The preceding example used the widget’s bind method to bind a mouse event with a callback handler 

by using the syntax: 

widget.bind(event, handler) 

If a matching event occurs, the handler is invoked. In the preceding example, the event is 

<Button-3> and the handler function is popup. The event is a standard Tkinter object, 

which is automatically created when an event occurs. Every handler has an event as its argument. 

The following example defines the handler using the event as the argument: 

menu.post(event.x_root, event.y_root) 

106



The event object has a number of properties describing the event pertaining to the event. 

For example, for a mouse event, the event object uses the x, y properties to capture the current mouse 

location in pixels. 

The mouse and key events are processed and the processing information is displayed in the command 

window. 

Event Description 

Event Descriptions 

<Bi-Motion> An event occurs when a mouse button is moved while being held down on the 

widget. 

<Button-i> Button-1, Button-2, and Button-3 identify the left, middle, and right buttons. 
When a mouse button is pressed over the widget, Tkinter automatically grabs 

the mouse pointer’s location. Button Pressed-i is 

synonymous with Button-i. 

<ButtonReleased-

i> 

An event occurs when a mouse button is released. 

<Double-Button-i> An event occurs when a mouse button is double-clicked. 

<Enter> An event occurs when a mouse pointer enters the widget. 

<Key> An event occurs when a key is pressed. 

 

 

 

 

<Leave>  

An event occurs when a mouse pointer leaves the widget. 

<Return> An event occurs when the Enter key is pressed. You can bind any key such as 

A, B, Up, Down, Left, Right in the keyboard with an event. 

<Shift+A> An event occurs when the Shift+A keys are pressed. You can combine Alt, 

Shift, and Control with other keys. 

<Triple-Button-i> An event occurs when a mouse button is triple-clicked. 

 

from tkinter import * # Import all definitions from tkinter 

class MouseKeyEventDemo: 

       def _ _init_ _(self): 

      window = Tk() # Create a window 

      window.title("Event Demo") # Set a title 

      canvas = Canvas(window, bg = "white", width = 200, height = 100) 

      canvas.pack() 

107



      canvas.bind("<Button-1>", self.processMouseEvent) 

      canvas.bind("<Key>", self.processKeyEvent) 

      canvas.focus_set() 

      window.mainloop() # Create an event loop 

def processMouseEvent(self, event): 

      print("clicked at", event.x, event.y) 

      print("Position in the screen", event.x_root, event.y_root) 

      print("Which button is clicked? ", event.num) 

def processKeyEvent(self, event): 

      print("keysym? ", event.keysym) 

      print("char? ", event.char) 

      print("keycode? ", event.keycode) 

MouseKeyEventDemo() # Create GUI 

 

Output: 

  

 

Animations 

Animations can be created by displaying a sequence of drawings. 

The Canvas class can be used to develop animations. You can display graphics and text on the canvas 

and use the move(tags, dx, dy) method to move the graphic with the specified tags dx pixels to the 

right if dx is positive and dy pixels down if dy is positive. If dx or dy is negative, the graphic is 

moved left or up. 

AnimationDemo.py 

from tkinter import * # Import all definitions from tkinter 

108



class AnimationDemo: 

       def _ _init_ _(self): 

                 window = Tk() # Create a window 

                 window.title("Animation Demo") # Set a title 

                 width = 250 # Width of the canvas 

                 canvas = Canvas(window, bg = "white", width = 250, height = 50) 

                canvas.pack() 

               x = 0 # Starting x position 

               canvas.create_text(x, 30,text = "Message moving?", tags = "text") 

               dx = 3 

               while True: 

                    canvas.move("text", dx, 0) 

                    canvas.after(100) 

                   canvas.update()                          

                   if x < width: 

                        23 x += dx # Get the current position for string 

                   else: 

                        25 x = 0 # Reset string position to the beginning 

                        canvas.delete("text") 

                        canvas.create_text(x, 30, text = "Message moving?", tags = "text") 

             window.mainloop() # Create an event loop 

AnimationDemo() # Create GUI 

 

Output: 

  

109



The program creates a canvas (line 9) and displays text on the canvas at the specified initial location 

(lines 13–15). The animation is done essentially in the following three statements in a loop (lines 19–

21): 

canvas.move("text", dx, 0) # Move text dx unit 

canvas.after(100) # Sleep for 100 milliseconds 

canvas.update() # Update canvas 

The x-coordinate of the location is moved to the right dx units by invoking canvas.move (line 19). 

Invoking canvas.after(100) puts the program to sleep for 100 milliseconds (line 20). Invoking 

canvas.update() redisplays the canvas (line 21). 

You can add tools to control the animation’s speed, stop the animation, and resume the animation.  

 

Scrollbars 

A Scrollbar widget can be used to scroll the contents in a Text, Canvas, or Listbox widget vertically 

or horizontally. 

ScrollText.py 

from tkinter import * # Import all definitions from tkinter 

class ScrollText: 

      def _ _init_ _(self): 

               window = Tk() # Create a window 

               window.title("Scroll Text Demo") # Set title 

               frame1 = Frame(window) 

               frame1.pack() 

               scrollbar = Scrollbar(frame1) 

               scrollbar.pack(side = RIGHT, fill = Y) 

               text = Text(frame1, width = 40, height = 10, wrap = WORD, yscrollcommand = 

scrollbar.set) 

              text.pack() 

              scrollbar.config(command = text.yview) 

             window.mainloop() # Create an event loop 

ScrollText() # Create GUI 

The program creates a Scrollbar (line 10) and places it to the right of the text (line 11). 

110



The scrollbar is tied to the Text widget (line 15) so that the contents in the Text widget can be 

scrolled through. 

Standard Dialog Boxes 

You can use standard dialog boxes to display message boxes or to prompt the user to enter numbers 

and strings. 

Finally, let’s look at Tkinter’s standard dialog boxes (often referred to simply as dialogs). 

import tkinter.messagebox 

import tkinter.simpledialog 

import tkinter.colorchooser 

tkinter.messagebox.showwarning("showwarning", "This is a warning") 

tkinter.messagebox.showerror("showerror", "This is an error") 

isYes = tkinter.messagebox.askyesno("askyesno", "Continue?") 

print(isYes) 

isOK = tkinter.messagebox.askokcancel("askokcancel", "OK?") 

print(isOK) 

isYesNoCancel = tkinter.messagebox.askyesnocancel("askyesnocancel", "Yes, No, Cancel?") 

print(isYesNoCancel) 

name = tkinter.simpledialog.askstring( "askstring", "Enter your name") 

print(name) 

age = tkinter.simpledialog.askinteger("askinteger", "Enter your age") 

print(age) 

weight = tkinter.simpledialog.askfloat("askfloat", "Enter your weight") 

print(weight) 

These functions are defined in the tkinter.messagebox module. The askyesno function displays the 

Yes and No buttons in the dialog box. The function returns True if the Yes button is clicked or False if 

the No button is clicked. 

111


	Course Objectives: 
	UNIT - I Introduction 
	UNIT - II Python Function 
	UNIT - III Class and Object 
	UNIT - IV Files and Exception Handling 
	UNIT - V Database and GUI 
	TEXT BOOKS: 
	REFERENCES: 
	Course Outcomes: 
	INTERACTIVE MODE PROGRAMMING
	SCRIPT MODE PROGRAMMING
	PYTHON IDENTIFIERS
	RESERVED WORDS
	Lines and Indentation
	PYTHON - VARIABLE TYPES
	Assigning Values to Variables
	Multiple Assignment
	STANDARD DATA TYPES
	Basic Assignment

	CONSTANTS
	TYPES OF OPERATOR
	Python Arithmetic Operators
	Python Comparison Operators
	Python Assignment Operators
	Python Bitwise Operators
	Python Logical Operators

	TYPE CONVERSION IN PYTHON
	BOOL() IN PYTHON
	Loop Control Statements

	Assignment Operators:
	PRECEDENCE OF PYTHON OPERATORS

	Operator Precedence:
	THE ELSE AND ELIF CLAUSES
	ONE-LINE IF STATEMENTS

	The break Statement:
	Example:

	The continue Statement:
	Example:

	The else Statement Used with Loops
	Example:

	The pass Statement:
	Example:

	Advantages of user defined functions:
	Example:
	ELEMENTS OF USER DEFINED FUNCTIONS
	FUNCTION DEFINITION
	Syntax:
	example:
	Strings:
	Operations on string:
	ACCESSING CHARACTERS IN PYTHON
	What Is Object-Oriented Programming (OOP)?
	Basic formatting
	Old
	New
	Output
	Old (1)
	New (1)
	Output (1)
	New (2)
	Output (2)

	Value conversion
	Setup
	Old
	New
	Output
	Setup (1)
	Old (1)
	New (1)
	Output (1)

	Padding and aligning strings
	Old
	New
	Output
	Old (1)
	New (1)
	Output (1)
	New (2)
	Output (2)
	New (3)
	Output (3)
	New (4)
	Output (4)

	Truncating long strings
	Old
	New
	Output

	Combining truncating and padding
	Old
	New
	Output

	Numbers
	Old
	New
	Output
	Old (1)
	New (1)
	Output (1)

	Padding numbers
	Old
	New
	Output
	Old (1)
	New (1)
	Output (1)
	Old (2)
	New (2)
	Output (2)

	Signed numbers
	Old
	New
	Output
	Old (1)
	New (1)
	Output (1)
	Old (2)
	New (2)
	Output (2)
	New (3)
	Output (3)
	New (4)
	Output (4)

	Named placeholders
	Setup
	Old
	New
	Output
	New (1)
	Output (1)


	FUNCTIONS:
	NEED FOR FUNCTION
	TYPES OF FUNCTION:
	BUILT IN FUNCTION
	FUNCTION PROTOTYPES:
	1. Function without arguments and without return type
	2. Function with arguments and without return type
	3. Function without arguments and with return type
	4. Function with arguments and with return type
	PARAMETERS AND ARGUMENTS:
	Arguments :
	Return Statement:
	ARGUMENTS TYPES:
	Required Arguments:
	Keyword Arguments:
	METHODS OF RAWTURTLE/TURTLE AND CORRESPONDING FUNCTIONS
	Turtle motion


	Variable length Arguments
	GENERATE A RANDOM STRING OF FIXED LENGTH
	Generate a random string of specific letters only

	Generate random string with letters and digits in Python

	CREATING CLASSES
	Example

	PYTHON - PUBLIC, PRIVATE AND PROTECTED ACCESS MODIFIERS
	CREATING INSTANCE OBJECTS
	Accessing Attributes
	COMPOSITION

	METHOD OVERLOADING
	Destroying Objects (Garbage Collection)
	Attributes of class objects

	Slots
	slots provide a special mechanism to reduce the size of objects. It is a concept of memory optimisation on objects.
	Avoiding Dynamically Created Attributes


	OUTPUT USING THE PRINT() FUNCTION
	Python - GUI Programming (Tkinter)
	1. import the TKinter module.
	2. After importing, setup the application object by calling the Tk() function. This will create a top-level window (root) having a frame with a title bar, control box with the minimize and close buttons.
	3. The geometry() method defines the width, height and coordinates of the top left corner of the frame as below:                  window.geometry("widthxheight+XPOS+YPOS")
	Geometry Management
	The place() Method − This geometry manager organizes widgets by placing them in a specific position in the parent widget.
	Tkinter Widgets


